

- The world's leading manufacturer of silicone-insulated wires and cables
- Europe's leading manufacturer of glass-yarn braids
- France's leading manufacturer of fire safety cables

The Omerin group has been producing electrical cables for extreme conditions since 1959

At Omerin, we use our know-how and technology to develop increasingly high-performance products.

Our expertise is recognized in over 120 countries.

Omerin offers a wide range of high-performance products covering a large number of applications in very diverse industries, including the electrothermal construction, electromechanical, chemical, nuclear energy, railway, naval, aeronautical, heavy industry, power plant and other sectors. Our product range is further extended by varnished, impregnated and treated braided insulating sleevings, door seals for ovens, fireproof sleevings, thermocouple, extension and compensation cables as well as industrial braids.

List of all the available catalogues:

- HIGH TEMPERATURE WIRES AND CABLES FOR THE GENERAL MARKET SECTION I: CROSS LINKED ELASTOMERS
- HIGH TEMPERATURE WIRES AND CABLES FOR THE GENERAL MARKET SECTION II: FLUOROPOLYMERS AND THERMOPLASTICS
- HIGH TEMPERATURE WIRES AND CABLES FOR THE GENERAL MARKET SECTION III: COMPOSITE INSULATIONS
 - FIRE RESISTANT SAFETY CABLES
- CABLE SOLUTIONS FOR ROLLING STOCK 6
 - CABLES FOR POWER STATIONS () AND HIGH-RISK SITES
 - MARINE CABLES
 - PYROMETRY CABLES 8
 - BRAIDED INSULATING SLEEVINGS 🧐
 - HIGH TEMPERATURE MEDIUM VOLTAGE DOWER CABLES

PACKAGING AND TECHNICAL DATA

Men and women at your service

The technical expertise of our teams is at your disposal, providing responses and solutions to all your requirements.

Our Methods, Quality and Research and Development Departments work permanently together with the aim of constantly improving our products and processes.

All our staff subscribe to this approach with their involvement and constant self-checking at all stages of production.

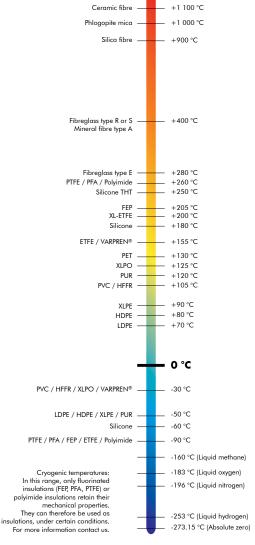
> Ultimately, this catalogue is the result of the passionate endeavours of an entire team, who have displayed great talent in writing it for you.

It is designed to be a simple and concise working tool for you, serving as a reference document that is able to meet the majority of your needs.

This catalogue, as well as ten others from our collection are available on line with real time updates and much more information at

www.omerin.com

All the trademarks listed below are registered trademarks of the OMERIN Group.



Thermal classification of insulations

Borosilicoaluminate fibre _

+1 200 °C

Contents

PACKAGING OPTIONS	Pages 4 to 7
GENERAL	Pages 8 to 9
CONDUCTING CORES	Pages 10 to 13
INSULATIONS	Pages 14 to 15
PERMISSIBLE CURRENTS	Pages 16 to 17
FIRE AND FLAME TESTS	Pages 18 to 20
STANDARDS AND NORMS	Page 21
INTERNATIONAL SYSTEM OF UNITS	Page 22
CONVERSION FACTORS	Page 23

PACKAGING OPTIONS

Packaging on drums

Drum dimensions

AND THE ALL

	- /								
	Drum reference		Nature of	Diameter A	Diameter B	Diameter C	Le	Lu	Approximate
ODP	ODS	ODB	flanges	mm	mm	mm	mm	mm	weight
Cat. T - Di	rums								kg
-	-	T 300	Plywood	300	150	33	216	200	1.1
T 400	T 400	-	Plywood	400	148	31	316	300	2.4
T 400B	-	-	Plywood	400	148	31	216	200	2.1
	T 400D	-	Plywood	400	208	42	216	200	2.0
-	T 450B	-	Plywood	450	208	42	216	200	2.4
-	T 450	T 450	Plywood	450	208	42	266	250	2.5
T 600	T 600	T 600	Plywood	600	242	83	324	300	5.5
T 600C	-	-	Metal rimmed plywood	600	315	42	330	300	6.8
T 750	T 750		Plywood	750	300	83	480	450	11
-	-	T 750DB	Plywood	750	300	83	375	350	8.9
T 900	T 900	-	Wood	900	420	83	526	458	25
T 900C	-	-	Metal rimmed wood	900	420	83	550	450	43
T 1050	T 1050	-	Wood	1 050	530	83	526	458	40
T 1050C	-	-	Metal rimmed wood	1 050	545	83	550	450	60
T 1200	T 1200	-	Wood	1 200	630	83	700	600	60
T 1200C	-	-	Metal rimmed wood	1 200	630	83	700	600	90
T 1400	T 1400	-	Wood	1 400	720	83	712	600	115
T 1400C	-	-	Metal rimmed wood	1 400	720	83	712	600	150
T 1650	T 1650	-	Wood	1 650	720	83	732	600	160
T 1650C	-		Metal rimmed wood	1 650	630	83	732	600	210

Theoretical drum capacity according to product diameter

Ref. ODP	-		T 400B	- T (000	- T 4500	- T 450		T 600C	T 750	-	T 900	T 900C	T 1050	T 1050C		T 1200C		T 1400C		T 1650C
Ref. ODS Ref. ODB	- T 300	T 400 -	-	1 400D -	T 450B -	T 450 T 450	T 600 T 600	-	T 750 -	- T 750DB	T 900 -	-	T 1050 -	-	T 1200 -	-	T 1400 -	-	T 1650 -	-
Diameter of product									1	Maximum c	0	n on DRUM ar m)	dispatche	d*						
(mm)											line									
2.0	1 930	5 700	3 800	3 050	5 060	6 330	13 400	11 300	31 800	25 430	-	-	-	-	-	-	-	-	-	•
3.0 4.0	830 480	2 500 1 380	1 650 920	1 320 760	2 200 1 260	2 760 1 570	6 000 3 290	4 910 2 760	13 930 7 910	11 240 6 320	19 310 10 790	19 060 10 600	25 610 14 240	24 490 13 630	21 200	21 200		-	-	
5.0	310	900	600	480	790	980	2 080	1 770	5 080	4 090	7 020	6 940	9 250	8 810	13 790	13 790	19 870	19 870		
6.0	190	600	390	310	530	650	1 460	1 220	3 480	2 810	4 730	4 670	6 400	6 010	9 520	9 520	13 680	13 680	22 1 20	23 330
7.0	150	450	300	220	400	500	1 030	870	2 510	2 060	3 470	3 420	4 610	4 450	6 820	6 820	9 920	9 920	16 060	16 940
8.0	120	340	230	170	310	390	780	680	1 970	1 510	2 630	2 580	3 560	3 400	5 300	5 300	7 690	7 690	12 190	13 120
9.0	90	250	160	130	230	280	620	520	1 540	1 170	2 030	2 030	2 800	2 720	4 190	4 190	6 010	6 010	9 730	10 360
10.0	70	210	140	110	190	240	490	440	1 270	980	1 680	1 680	2 220	2 140	3 350	3 350	4 960	4 960	7 850	8 500
11.0 12.0	50 40	160 130	110 80	80 70	160 120	190 160	420 360	360 300	1 010 820	780 700	1 380 1 130	1 350 1 100	1 850 1 540	1 730 1 430	2 760 2 300	2 760 2 300	3 990 3 420	3 990 3 420	6 360 5 420	6 760 5 830
13.0	40	130	80	50	120	130	310	250	710	540	990	960	1 340	1 250	2 020	2 020	2 870	2 870	4 520	4 930
14.0	30	100	60	50	100	120	250	200	620	490	850	850	1 090	1 1 1 0	1 620	1 620	2 370	2 370	3 870	4 090
15.0	30	100	60	50	80	90	220	190	540	410	740	740	960	970	1 450	1 450	2 150	2 150	3 430	3 660
16.0	20	70	40	30	-	90	170	150	460	350	640	640	830	850	1 250	1 250	1 890	1 890	2 920	3 1 5 0
17.0	10	70	40	30	-	70	170	140	390	340	550	550	710	730	1 090	1 090	1 690	1 690	2 670	2 900
18.0	10	50	30	30	-	60	130	110	380	290	480	480	700	640	1 040	1 040	1 500	1 500	2 430	2 510
19.0	10	50	30	30		50	130	110	310	240	460	440	610	530	900	900	1 320	1 320	2 050	2 280
20.0	10	50	30	20		50	110 100	110 80	310	240 190	380 370	380 370	510 490	520 440	790 740	790 740	1 180 1 020	1 180	1 900 1 680	2 120 1 780
21.0 22.0		-				-	100	80 70	260 250	190	370	370	490	440	740 640	640	990	1 020 990	1 530	1 630
22.0		-	-		-	-	80	70	200	160	300	300	420	360	630	630	870	870	1 500	1 600
24.0		-	-		-	-	70	70	200	150	260	250	360	340	530	530	850	850	1 350	1 450
25.0		-		-	-	-	70	50	200	150	250	250	340	350	520	520	740	740	1 210	1 310
26.0		-	-	-	-	-	70	50	160	120	240	240	330	280	500	500	710	710	1 080	1 180
27.0	-	-	-	-	-	-	50	50	150	110	190	190	270	270	420	420	610	610	1 040	1 1 50
28.0 29.0	-	-	-	-	-	-	50 50	40 40	150 120	110 110	190 180	190 180	270 250	270 220	400 380	400 380	590 570	590 570	920 890	1 020 900
30.0		-				-	50	40	120	80	180	180	230	220	330	330	500	500	810	900
31.0		-	-		-	-	50	30	110	90	140	140	210	210	310	310	480	480	780	800
32.0		-	-		-	-	30	30	110	80	140	140	200	210	300	300	460	460	670	760
33.0	-	-	-	-	-	-	30	30	100	80	130	130	190	160	300	300	400	400	670	700
34.0	-	-	-	-	-	-	30	20	80	80	130	130	160	160	240	240	380	380	650	670
35.0	-	-	-	-	-	-	30	20	80	60	130	120	160	150	240	240	380	380	580	670
36.0	-	-	-	-	-	-	30	20	80	60	100	100	150	150	230	230	360	360	560	580
37.0		-	-	-	-	-	30 30	20 20	80	60	100	100	150 150	150 110	230	230 210	310 290	310	560 470	580
38.0 39.0	-	-	-	-		-	30	20	70 70	60 50	100 90	90 90	140	110	210 210	210	290 290	290 290	470	550 490
40.0							20	20	70	50	90	90	140	110	170	170	290	290	470	490
41.0	-	-	-	-	-	-	20	10	50	50	90	80	110	100	160	160	270	270	440	470
42.0		-	-	-	-	-	20	10	50	40	80	80	100	100	160	160	230	230	390	410
43.0		-	-	-	-	-	10	10	50	40	80	80	100	100	150	150	210	210	370	390
44.0	-	-	-	-	-	-	10	10	50	30	60	60	100	100	150	150	210	210	370	390
45.0		-	-	-	-	-	10	10	50	30	60	60	100	100	150	150	210	210	370	390

ODP: OMERIN division principale // **ODS**: OMERIN division silisol // **ODB**: OMERIN division Berne * Indicative quantity varying according to the flexibility of the core and type of insulation. Note: All our products supplied on drums are externally protected with a cardboard or plastic film wrapping.

www.omerin.com

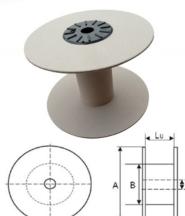
PACKAGING OPTIONS

Packaging on spools

Spool dimensions

		Spool reference		Nature of	Diameter A	Diameter B	Diameter C	Le	Lu	Approximate
	ODP	ODS	ODB	flanges	mm	mm	mm	mm	mm	weight
Cat	t. T - Spool	S								3
	-		B 120A	Plastic	120	50	45	40	35	48
	-	-	B 120B	Plastic	120	50	45	105	100	58
	-	-	B 170A	Plastic	170	67	64	72	68	92
	-	-	B 170B	Plastic	170	70	61.1	128	120	152
	-	-	B 225	Plastic	225	72	67.5	60	54	192
	-	B 270	-	Plastic	270	100	30	140	125	480
	B 300	B 300 cardboard	-	Cardboard	300	100	30	210	200	730
	B 300-BLA	B 300 plastic	-	Plastic	300	100	30	220	200	720
Ca	t. D - DIN s	pools								
	D 80	-	-	Plastic	80	50	15	80	65	80
	D 100		-	Plastic	100	60	15	100	80	125
	D 125	-	-	Plastic	125	80	15	125	100	160
	D 160	-	-	Plastic	160	100	22	160	123	360
	D 200	-	-	Plastic	200	125	22	200	160	630
	D 250	-	-	Plastic	250	160	22	197	160	1 050

Theoretical spool capacity according to product diameter


Ref. ODP	D 80	D100	D 125	D 160	D 200	D 250	-				-	-	B 300 or B 300-BLA
Ref. ODS	-	-	-	-	-	-	-	-	-	-	-	B 270	B 300 Cardboard or B 300 Plastic
Ref. ODB	-	-	-	-	-	-	B 120A	B 120B	B 170A	B 170B	B 225	-	-
Diameter							Maximum cab	le lenath on Si	POOL*				
of product (mm)							(li	near m)					
0.3	1 210	2 820	4 470	9 170	20 890	-	2 620	7 530	11 240	19 510	17 370		
0.4	690	1 570	2 480	5 210	11 710	-	1 480	4 240	6 320	10 910	9 730	-	-
0.5	440	1 020	1 610	3 340	7 590	12 350	950	2 710	4 060	7 020	6 270	-	-
0.6	290	710	1 1 1 0	2 290	5 140	8 500	660	1 880	2 780	4 880	4 340	12 860	24 510
0.7	220	510	800	1 660	3 830	6 290	470	1 340	2 050	3 550	3 180	9 420	18 010
0.8	160	380	600	1 300	2 930	4 730	360	1 040	1 580	2 730	2 410	7 150	13 850
0.9	130	300	470	1 010	2 280	3 690	280	830	1 220	2 160	1 920	5 660	10 890
1.0	110	250	400	830	1 860	3 090	240	680	1 000	1 760	1 550	4 640	8 890
1.1	90	200	310	680	1 560	2 470	190	550	820	1 410	1 290	3 800	7 280
1.2	70	170	270	550	1 250	2 120	160	470	680	1 200	1 070	3 180	6 050
1.3	60	140	220	480	1 1 1 0	1 750	140	390	580	1 010	910	2 690	5 190
1.4	50	120	190	410	930	1 570	120	330	510	880	790	2 320	4 430
1.5	40	110	180	360	820	1 340	100	300	450	780	680	2 050	3 870
1.6	40	90	150	310	730	1 1 50	80	250	390	680	580	1 760	3 460
1.7	30	80	120	270	650	1 030	80	220	340	590	530	1 590	3 060
1.8	30	70	120	250	570	920	70	200	290	540	470	1 390	2 720
1.9	30	60	100	220	500	830	60	170	270	470	420	1 250	2 400
2.0	30	60	90	210	440	750	60	170	250	430	380	1 1 3 0	2 190
2.1		60	90	180	430	670	50	150	230	390	340	1 010	1 980
2.2		40	70	170	370	590	40	130	200	350	310	940	1 780
2.3	-	40	70	140	320	570	40	130	190	320	290	850	1 600
2.4		40	70	140	310	510	40	110	170	290	260	790	1 510
2.5	-	40	60	130	300	490	40	110	150	280	240	740	1 420
2.6	-	30	50	110	260	430	30	90	140	250	220	660	1 260
2.7 2.8	-	30 30	50 50	110	250 220	390 370	30 30	90 80	140 120	230 220	210 190	610 560	1 190 1 110
2.0		30	50				30	80			170		1 030
				80	210	360			120	200	170	520	
3.0 3.2		30	40 30	80 80	210 170	320 270	20	70 60	90	200 1 <i>7</i> 0	140	510 440	960 830
3.4			30	60	160	2/0	20	50	80	150	140	390	760
3.4			30	60	130	200	20	50	70	130	130	390	650
3.8				50	130	210	10	40	60	110	100	300	590
4.0				50	100	170	10	40	60	110	90	270	550
4.0				40	100	170	10	40	60	90	90 80	270	490
4.2				40	90	140	10	30	50	90	80	240	490
4.4		-		30	70	140	10	30	40	70	80 70	240	440
4.0				30	70	130	10	30	40	70	60	190	360
4.0 5.0				30	70	130	10	30	40	70	60	190	360
5.5	-		-	- 30	60	90	10	20	30	50	50	140	280
6.0					40	90 70	10	20	20	40	40	120	240
6.5		-			40	70	- 10	10	20	30	40	120	240
7.0					30	60		10	20	30	30	80	170
7.5					30	50	-	10	20	30	20	80	150
7.J 8.0					30	40		10	10	20	20	70	130
8.5		-		-	30	40		10	10	20	20	50	120
0.J 9.0						40 30		10	10	20	20	50	120
9.0		-		-		30	-	10	10	10	10	40	80
9.5						30	-	10	10	10	10	40	80

* Indicative quantity varying according to the flexibility of the core and type of insulation. Note: All our products supplied on spools are externally protected with a cardboard or plastic film band.

www.omerin.com

The information provided in this technical data sheet is indicative and may be modified without prior notice, laying, wiring and electrical conditions and the environment of the cable can not be fully considered in our studies. In no way the company OMERIN shall be held responsible for any incidents in the case of inappropriate uses, particularly in the case of wiring conditions that do not respect the good practice and the standards in force. For an optimum use of the cables produced by our company, we recommend testing in real conditions. Our sales department is available for a possible provision of samples, and/or for the conditions of a complete study in our laboratories. @ Registered trademark of the OMERIN Group. Drawings and photos are not contractual. Reproduction is prohibited without the prior agreement of OMERIN.

LES CABLES DE L'EXTREME

PACKAGING OPTIONS

Packaging in SILIBOX®

Benefits of SILIBOX® packaging

- Recyclable disposable packaging on Euro Pallets (1200 x 800 mm) developed by OMERIN SAS.
- No deposits or returns.
- Reduced packaging waste. •
- Easier handling.
- Reusable or recyclable boxes, practical and ecological. Reduced dimensions and storage costs.
- No costly or complicated unwinding system required:
- a simple return system positioned approx. 1.50 m above the box enables the cable to be pulled at high speed without breaking, entanglement and twisting.

Independent boxes, individual lids and labels, individual handling grips.

Theoretical capacity of SILIBOX® according to cable diameter

400 mm x 400 mm. Height 500 mm

Product diameter Maximum length of product on SILIBOX® mm 1.0 to 1.2 8 000 to 6 500 6 500 to 5 500 1.2 to 1.5 1.5 to 1.7 5 500 to 5 000 1.7 to 1.9 5 000 to 4 400 1.9 to 2.1 4 400 to 3 600 2.1 to 2.3 3 600 to 3 200 3 200 to 2 500 2.3 to 2.6 2.6 to 3.0 2 500 to 2 000 3.0 to 4.0 2 000 to 1 000

Note: These quantities are likely to vary in significant proportions according to the rigidity of the cable, the nature of the insulation, etc.

< 1000

The following references do not allow silibox packing:

> 4.0

- Wire with cross section bigger than 2.5 mm².
 Wire with diameter above 5 mm or below 1 mm.
- Reference with silicone varnished braid (ex CSV, VS, NVS).

- Reference with thick silicone insulation (type CS/RHT, style 3304).
 Reference with PTFE tape insulation (ex KZ, EE...).
 Wire with solid core (class 1) and extra-flexible core (class 6).

www.omerin.com

PACKAGING AND

PACKAGING OPTIONS

Other packaging options

Rolls

Certain products (e.g. electric wires, sleevings, etc.) can be delivered in rolls (see illustration).

A roll features wounding of product (wire or sleeving), with or without cardboard support. The product is maintained by adhesive tapes or stretchable film. Some sleevings can be supplied in kit spool form. The flanges are made of cardboard and metal. Several spool dimensions are available (see illustartion and table below).

Spool kit

Some sleevings can be supplied in kit spool form. The flanges are made of cardboard and metal. Several spool dimensions are available (see illustration and table below).

↓ U

Ref. ODP	Ø A (mm)	Ø B (mm)	Ø C (mm)	Lu (mm)
B180/100	180	82	30	100
B180/150	180	82	30	150
B300/100	300	82	30	100
B300/150	300	82	30	150
B300/200	300	82	30	200

Instruction for transport, handling and storage

General rules

For storage, transport and when handling, loading and unloading, care must be taken for not damaging the product or its packing, and so as not to alter its future use.

Upon reception, a visual control of the product and its packaging must be carried out, in order to make sure that everything is OK.

Storage guidelines For a good preservation of our products, they have to be stored as a general standard:

- In their original packing
- · Protected from rain, in a dry place, with no risk of excessive humidity
- Protected from direct sun rays
 At temperatures from -10°C up to + 40°C
- Sheltered from shocks and other risks (clean and flat floor, sufficient spacing between the reels, ...)
- Do not stack the reels, store them vertically (horizontal axis) It is recommended to store the spools of wire vertically (horizontal axis).

Specific instructions for reels and drums with flanges of diameter of 750 mm and more

Reels must be transported vertically, hold in place so as not to collide into each other. The impact could damage the outer sheathing of the cables. Transport of such size reels with flanges in a horizontal position is prohibited.

Unloading and handling will be done with lifting machines. If a forklift truck is used, the lifting will be done with a beam going through the central axis of the reel, or with the forks. In the later case, place both forks on both sides of the reel, and make sure that both flanges of the reel are onto the forks. At no time the forks must touch the cable.

In the case of a lifting machine, the lifting will be done with a beam and a sling which length will be long enough so the strength applied on the flanges of the reel will not be too important. The strength can be limited by the use of a lifting beam. At no time the lifting machine must touch the cable.

All these conditions are indicatives and non exhaustives.

www.omerin.com

advantage to various types of cables without deeper analysis of the intended application.

GENERAL

Comments on selecting an OMERIN cable

For reliable long-term service, it is important to select the right electric cable or wire for the application. The current cable market features many products whose main qualities are as much a result of the properties of insulation products available at this time, as the construction and the protection systems applied to cables. Relying on past experience may often be useful, but can sometimes be just as dangerous. As cable dimensions restrictions are sometimes complex, it is difficult to generally and directly assign a genuine

It is therefore essential to know all the environmental conditions for the application to ensure the cable is correctly dimensioned. Although non-exhaustive, the list below indicates the main restrictions to be

taken into account in specifying electrical cables:

Electrical resistance: All the electrical requirements of the application (type and voltage of power supply, current strength, etc.) are required and mandatory to define the cable. In particular, remember that the intrinsic temperature of the conductor may have a significant influence on its linear resistance. Furthermore, concerning the cable insulation, its insulation resistance varies according to its temperature.

Thermal resistance: Exposure to excessive temperatures over a too long period may cause premature deterioration of the constituent cable materials (fissuring, combustion, flaking, etc.). The period of exposure is therefore as important as the temperature value itself, in the choice of materials which must resist both brief, high thermal shocks and prolonged exposure at lower temperatures. In this matter, note that the overall thermal resistance of the cable may not be higher than that of the constituent part with the lowest thermal resistance.

Presence of humidity: For certain materials, the absorption of humidity may vary to certain degrees. If it exceeds a certain threshold, the level of humidity may generate faults within the electrical system itself.

• Fire and/or flame resistance: The non-spreading of vertical or horizontal flames may be a major characteristic of a cable. However, fire resistance is a completely different property to flame resistance. Indeed, for certain types of cable, applicable regulations impose a minimum duration of fire resistance, while maintaining the operational integrity of the cable.

• Resistance to mechanical forces: Certain forces of mechanical origin and external to the cable (bending, impacts, abrasion, crushing, etc.) may cause premature deterioration of certain insulation and sheathing materials (mechanical fatigue) and may cause the long-term loss of certain properties that are essential to the cable's life. For example and in general, tape insulation systems have difficulty supporting alternate bending cycles.

Resistance to chemical products: Certain categories of chemical products (hydrocarbons, solvents, acids, etc.) may damage insulation or sheathing materials used on cables. Fluorinated materials are in general more resistant to chemical attacks than other materials used for cable insulation or sheathing.

Resistance to cryogenic temperatures: In general, most materials used at low temperatures become brittle (flaking) or lose their natural flexibility. Only fluorinated insulation materials or polyimides retain their mechanical properties at cryogenic temperatures.

 Pouring of molten metals: This is often accidental any may cause partial or total destruction of the cable. Certain smart combinations of insulation or sheathing materials can nonetheless considerably reduce the risks of damage to the cable due to molten metal.

Emission and toxicity of smokes In case of fire, certain safety regulations define limits on the quantity of smokes emitted, along with their nature and toxicity rating. Certain materials present interesting properties in this area (fibreglass, silicone rubber, halogen-free polymers, etc.).

Resistance to radiation: Taking into account this factor may be restrictive to the cable dimensioning. Indeed, certain materials such as polyimide insulation resist more effectively to radiation than other materials

The following pages provide information on the materials used to make OMERIN cables. Our technical departments are at your service to provide all further information required.

ww.omerin.com

PACKAGING AND

GENERAL

Glossary

Conducting core (or conductor)

The conductor core of a cable carries the current.

It is generally circular, sometimes compacted.

It comprises one or more strands of the same conducting metal, which in most cases can be aluminium or copper. To improve certain properties of the conducting metal, copper strands may be coated with a metal layer. Sometimes, which resistance to high temperatures is required, a conductor core made entirely of pure nickel strands is necessary.

 Stranded core (IEC 60228 class 2): circular core (compacted or not) comprising a set of wires assembled together.
Flexible core (IEC 60228 class 5): circular core comprising a set of wires

assembled together in concentric or bunched strands.

• Ultra-flexible core (IEC 60228 class 6): circular core comprising a set of very fine wires assembled together in concentric or bunched strands

Concentric strand: geometrically-arranged spiral assembly of wires featuring one or more separate layers.

· Bunched strand: spiral assembly where the wires have no pre-defined

Composite strand: geometrical assembly of several concentric or bunched strands featuring one or more separate layers.
Theoretical cross-section: Where n is the number of strands making up the

core and d is the diameter of the strands, the theoretical cross-section is given by the following formula:

$S = n \cdot \pi d^2 / 4$

• Nominal cross-section: conventional or standard value of a core cross-section.

Insulation

Single or multi-part layer, whose function is to electrically insulate the core against the outside.

Extruded insulation: composite based on elastomer or thermoplastic technology forming a continuous, uniform and homogeneous layer.

 Composite insulation: composite featuring synthetic or mineral wires or tapes, lapped, braided, woven or wound around the core and treated, coated, lacquered or left in a natural state.

Insulated conductor

Comprises the core, its insulation and possible other components (screen, separator, etc.).

Assembly or twisted conductors

Lexicon of vocabulary commonly used by the cable industry and/or defined in installation standards

MECHANICAL STRESS IMPACT according to NF C 15-100

- AG1 Low severity (Normal, e.g. household and similar equipment) AG2 Medium severity (Standard industrial equipment,
- where applicable, or reinforced protection)
- AG3 High severity (Reinforced protection)
- AG4 Very high severity (mines, quarries...)

RESISTANCE TO SOLAR RADIATIONS AND WEATHER

- Excellent Permanent exposure
- Very good Frequent exposure
- Good Occasionnal exposure
- Fair Accidental exposure
- Poor No exposure

PRESENCE OF WATER according to NF C 15-100

- AD1 Negligible (probability of presence of water is negligible)
- AD2 Free falling drops (probability of presence of water is negligible)
- AD3 Sprays (possibility of water falling as a spray at an angle up to 60° from the vertical)
- AD4 Splashes (possibility of splashes from any direction)
- AD5 Jets (possibility of jets of water from any direction)
- AD6 Waves (possibility of water waves, seashore locations)

www.omerin.com

LES CABLES DE L'EXTREME

Group of insulated conductors assembled together, most commonly with a spiral layout, in one or more layers. The assembly pitch defines the length of a full rotation of the spiral along the axis of the cable, by a constituent component.

Filler

Material whose function is to fill the gaps between the constituent components of an assembly.

Separator

Film inserted between two components of a conductor or a cable to prevent interactions between them or to facilitate their separation. May also be used to facilitate the cable manufacturing.

Screen

Conductive layer comprising metal tapes, generally made of aluminium or copper, metallic braids, generally copper, whose function is to insulate the conductor or the cable against external electromagnetic fields that may disturb its operation

Inner sheath

Continuous tubular layer of a non-metal material (elastomer or thermoplastic), usually extruded and covering the screen or the assembly of conductors and filler if any.

Bedding

Layer of under-armour material.

Armour

Layer of metal foil, round or flat metal wires, intended to protect the cable from external mechanical effects. The armour may be on the outside of the cable.

Outer sheath (jacket)

Continuous, uniform tubular layer of a non-metal material (elastomer or thermoplastic), usually extruded and applied to the external part of the cable to provide external protection. The outer sheath must be appropriate for the immediate surroundings of the cable (humidity, water, fire, oils, solvents & chemical products, aggressive weather, UV radiation, X-rays, etc.).

- AD7 Immersion (possibility of intermittent partial or total) covering by water)
- AD8 Submersion (equipment is permanently and totally covered)

CHEMICAL RESISTANCE

- Excellent Permanent contact
- Very good Frequent contact
- Good Occasionnal contact
- Fair Accidental contact
- Poor No contact

BEHAVIOUR TO FIRE according to NF C 32-070

- C1 Fire retardant
- C2 Flame retardant
 - C3 No classification to fire resistance
 - CR1 Fire resistant
 - CR2 All cables which are not CR1

CONDUCTING CORES

Nominal stranding and flexibility class

nem nem <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Ot</th> <th>her strandir</th> <th>ng options -</th> <th>· Number o</th> <th>f strands /</th> <th>Diameter o</th> <th>f strand (m</th> <th>m)</th> <th></th> <th></th>							Ot	her strandir	ng options -	· Number o	f strands /	Diameter o	f strand (m	m)		
				Compacted round		0.50	0.40	0.20	0.25	0.20	0.14	0.15	0.12	0.10	0.07	0.05
mm MvG 1 kd m kd <thm k<="" td=""><td>0000</td><td></td><td>corcs</td><td>cores</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thm>	0000		corcs	cores												
007 1 1 0.02 1 0.03 0 1 0.03 0 0.03 0 0.03 0	(mm²)	AWG	1 x d		n x d	n x 0.50	n x 0.40	n x 0.30	n x 0.25	n x 0.20	n x 0.16	n x 0.15	n x 0.13	n x 0.10	n x 0.07	n x 0.05
007 1 1 0.02 1 0.03 0 1 0.03 0 0.03 0 0.03 0	0.03		1 x 0 20												10	20
0.00 28 1 <td></td> <td>30</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3</td> <td>4</td> <td>7</td> <td>10</td> <td>30</td>		30										3	4	7	10	30
013 20 30 40 15 30 40 15 30 40 014 - 1 10 12 10 10 12 10 10 12 10 <t< td=""><td>0.07</td><td></td><td>1 x 0.30</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>4</td><td></td><td></td><td>20</td><td>40</td></t<>	0.07		1 x 0.30									4			20	40
113 20 3 7 10 17 18 70 10 17 0.14 - 1x 0.52 - 5 - 12 19 40 80 0.15 - 1x 0.52 - 7 0.11 11 17 19 20 50 100 0.22 2.4 1x 0.57 - 7 11 17 19 22 30 60 130 0.25 - 7x 0.63 3 5 7 11 17 19 22 30 50 100 200 0.38 - - 1x 0.08 19x 0.18 4 7 10 16 22 28 80 60 130 260 0.73 - 1x 0.08 19x 0.02 4 6 11 15 24 47 50 100 200 30 30 40 50 50 100 200 30 60 130 260 50 100 100 300 50 100				_												50
014 12.043 0 1 18 970 022 12.050 5 6 10 12 15 20 50 10 022 24 12.050 5 6 11 13 10 20 20 10 10 10 10 20 20 10 10 10 10 10 10 10 20 30 60 10 <td></td> <td></td> <td>I x 0.40</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4</td> <td>7</td> <td>7</td> <td></td> <td></td> <td>30</td> <td>60</td>			I x 0.40							4	7	7			30	60
0.12 . 1x 0.32 . .			1 x 0.43									8				70
0.22 24 1x 0.52 7 11 17 28 110 0.34 22 1x 0.67 7 11 17 29 30 50 100 200 0.38										5					40	80
0.24 2.2 1.2.07	0.2		1 x 0.50						4		10			26	50	100
0.34 22 1.x 0.67 1.x 0.67 1.x 0.80 10x 0.18 4 7 10 16 23 30 53 28 38 60 130 260 100 100 200 30 53 28 38 60 130 260 30 26 30 34 46 80 160 310 260 30 34 46 80 160 310 260 33 34 46 80 160 310 260 33 34 46 80 160 310 260 33 34 46 80 160 310 260 310 34 46 80 160 310 460 310 460 310 460 310 460 310 460 310 460 310 460 310 470 31 41 21 32 35 30 480 460 310 460 40 300 480 400 300 480 400 300 480 400 400 400			1 x 0.52			_		3			11					110
0.3 . 1×0.80 1×0.80 1×0.43 3 5 9 12 19 30 34 46 80 100 200 0.5 20 4×0.43 3 5 9 12 19 30 34 46 80 100 200 300 34 46 80 100 300 34 46 80 100 200 300 34 46 80 100 300 34 46 80 100 300 34 46 80 100 300 44 50 70 110 220 300 47 54 57 77 120 240 470 11 12 12 10 30 48 77 77 120 260 500 11 17 12 18 76 44 120 190 390 750 7 700 120 320 650 1280 31 80 112 168 200 550 108 112 168 200 550			1 0 4 7		7 x 0.22		•				17					
0.5 1 N 280 1 P x 0.18 4 7 10 16 22 28 38 60 130 260 0.6 20 4x 0.43 3 5 9 12 19 30 34 40 80 160 310 0.75 1 x 0.98 19 x 0.22 4 6 11 15 24 37 42 56 100 200 390 0.93 5 7 71 21 18 26 44 50 70 110 230 430 40 70 77 120 260 50 50 100 120 130 48 77 77 70 77 120 260 50 108 112 12 30 48 77 84 60 103 10 30 450 108 112 20 50 108 112 10 30 650 1280 10 12 12 12 30 30 10 10 <td></td> <td></td> <td>I X U.0/</td> <td></td> <td></td> <td></td> <td>3</td> <td>3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			I X U.0/				3	3								
0.6 20 4 × 0.43 3 5. 9 12 19 30 34 46 80 100 310 0.75 . 1×0.08 19×0.32 4 6 11 15 24 37 42 56 100 200 390 0.88 18 . 7<0.43 . 18 26 44 50 70 110 230 43 46 80 120 430 450 70 110 230 430 46 70 110 230 430 44 50 70 110 230 430 46 70 110 230 50 50 57 77 120 200 50 50 100 100 50 100 100 50 100 100 50 100 <th< td=""><td></td><td></td><td>1 x 0.80</td><td></td><td>19 x 0.18</td><td></td><td>4</td><td>7</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>			1 x 0.80		19 x 0.18		4	7								
0.7.9 1 k008 19 k0.22 4. 6 11 15 24 37 42 56 100 200 340 0.88 18 7 k0.43 1 18 26 444 50 70 10 230 450 0.93 . 7 k0.43 7 18 24 30 47 54 72 240 470 1.34 16 7 k0.49 7 11 19 32 50 57 77 120 200 550 50 1.5 . 1 k1.03 7 k0.49 7 11 17 27 43 50 108 112 168 200 550 1080 2 14 1 k1.00 7 k0.67 13 19 35 50 80 120 140 19 230 650 188 247 420 780 1830 240 780 1330 2 140 12 168 180 240 780 150 1850 1800 200 150		20				3										310
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.75		1 x 0 98													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			1 × 0.70		19 x 0.22	4										
1 - 1 x 1.13 $7x 0.43$ 19x 0.20 8 14 21 32 50 57 77 120 260 520 1.34 16 7x 0.69 7 11 19 27 41 70 77 108 170 350 680 1.5 - 1 x 1.38 19x 0.32 8 12 21 30 48 77 84 120 100 390 750 2 14 1 x 1.20 7x 0.64 13 19 35 50 80 120 140 192 320 650 1 280 2.5 - 1 x 1.77 7x 0.67 13 19 35 50 80 120 140 192 320 650 1 280 3.3 - - 16 24 45 61 98 150 180 247 420 780 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 5						5	7	12						110		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					7 x 0 /3	5			19	30	4/		12		240	4/0
1.34 16 7 × 0.49 7 11 19 27 41 70 77 108 170 350 680 1.5 - 1 × 1.38 19 × 0.32 8 12 21 30 48 77 84 120 190 390 750 2 14 1 × 1.00 7 × 0.64 -	1	-	1 x 1.13				8	14	21	32	50	57	77	120	260	520
1.5 · 1 x 1.38 19 x 0.32 8 12 21 30 48 77 84 120 190 390 750 2 14 1 x 1.60 7 x 0.64 -	1.34	16				7										680
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.5		1 x 1 38													
2 14 1x 1.00 19 x 0.37 11 17 27 43 65 108 112 168 290 550 1 280 2.5 . 1x 1.77 7x 0.67 13 19 33 50 80 126 140 192 320 650 1 280 3 . . 16 24 45 61 98 155 180 824 420 780 1 530 180 122 266 450 840 1650 165 165 165 244 30 399 680 133 2610 204 224 323 550 1050 266 5 . . 264 0 70 105 168 264 300 399 680 133 2610 302 304 343 475 800 150 3020 302 302 304 348 480 150 3020 3020 3020 302 304 418 600 150 3020 3020 3020 30	1.0					8	12	21	30	48	77	84	120	190	390	750
2.5 . 1x1.77 7x0.67 13 19 35 50 80 126 140 192 320 650 1280 3 . . 16 24 45 61 98 156 180 247 420 780 150 4 . 1x2.24 7x0.85 21 32 56 80 126 204 224 323 550 1050 2060 5 26 40 . 70 105 168 264 300 399 680 130 2060 6 . 1x2.74 . . . 7 107 171 266 418 481 700 130 200 430 200 430 200 430 200 430 200 430 200 430 200 430 200 300 . 160 168 316 444 703 814 110 180 3690 . 160 16	2	14	1 x 1.60			11	17	07	42	45	100	110	140	200	550	1.000
3 . 16 24 45 61 98 156 180 247 420 780 1 \$30 . 12 37 x 0.34 17 26 46 66 103 168 192 266 450 840 1650 4 1 x 2.24 7 x 0.85 21 32 56 80 126 204 224 323 550 1505 2 600 5 . 26 40 70 105 168 264 300 399 680 1 330 2 610 . 10 37 x 0.43 27 42 77 107 171 266 304 418 700 1 370 2 690 6 1 x 2.74 7 x 1.03 30 77 140 209 322 518 592 814 1380 2 700 5 300 10 . 7 x 1.68 	2.5		1 x 1 77	-												
12 37 x 0.34 17 26 46 66 103 168 192 266 450 840 1 650 4 - 1 x 2.24 7 x 0.85 21 32 56 80 126 204 224 323 550 1 050 2 060 5 - 26 40 70 105 108 264 300 399 680 1 330 2 010 - 10 37 x 0.43 27 42 77 107 171 266 304 418 700 1 370 2 690 6 - 1 x 2.74 7 x 1.04 31 48 43 66 191 171 266 418 488 666 1 302 2 004 322 510 302 2 00 5300 0 0 320 32 518 592 814 1 380 2 700 5 300 0 0 3 400 0 0 3 400 0 0 3 400 0 0 3 5 0 0 0 0 0 <t< td=""><td></td><td></td><td>1 & 1.77</td><td></td><td>/ x 0.0/</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			1 & 1.77		/ x 0.0/											
5 - 26 40 70 105 168 264 300 399 680 1 330 2 610 · 10 37 x 0.43 27 42 77 107 171 266 304 418 700 1 370 2 660 6 - 1 x 2.74 7 x 1.04 31 48 84 120 192 304 343 475 800 1 540 3 020 · 8 - 43 66 119 171 266 418 481 666 1130 2 200 4 320 10 - 7 x 1.33 50 77 140 209 322 518 592 814 1380 2 700 5300 · 6 105 190 276 444 703 814 110 180 3 690 · 7 x 1.08 192 140 77 119 224 323 516 814 925 123 4 180 - - - - 130 570 <t< td=""><td>-</td><td>12</td><td></td><td></td><td>37 x 0.34</td><td></td><td>26</td><td></td><td></td><td>103</td><td></td><td></td><td>266</td><td></td><td></td><td></td></t<>	-	12			37 x 0.34		26			103			266			
10 37 x 0.43 27 42 77 107 171 266 304 418 700 1 370 2 690 6 1 x 2.74 7 x 1.04 31 48 84 120 192 304 343 475 800 1 540 3 020 8 7 x 1.33 50 77 140 209 322 518 552 814 1 380 2 600 3 600 0 7 x 1.33 50 77 140 209 322 518 552 814 1 380 3 690 16 7 x 1.08			1 x 2.24		7 x 0.85											
6 - 1 x 2.74 7 x 1.04 31 48 84 120 192 304 343 475 800 1 540 3 020 . 8 43 66 119 171 266 418 481 666 1130 2 200 4 320 10 - 7 x 1.33 50 77 140 209 322 518 592 814 1 380 2 700 5 300 . 6 19 x 1 04 77 119 224 323 516 814 1110 1 880 3 600 16 . 7 x 1.08 19 x 1 04 77 119 224 323 516 814 925 1 258 2 130 4 180 . 4 108 168 316 444 703 1 10 1 295 1 480 2 013 3 400 2 130 3 400 . 1 219 342 608 888 1 406 2 196 2 501 3 355 5 670 . 1 219 342 <					07 0 10											
. 8 43 66 119 171 266 418 481 666 1 130 2 200 4 320 10 - 7 x 1.33 50 77 140 209 322 518 592 814 1 380 2 700 5 300 - 6 68 105 190 276 444 703 814 1 110 1 880 3 600 16 - 7 x 1.68 19 x 1.04 77 119 224 323 516 814 925 1 258 2 130 4 180 - 4 108 166 254 548 518 798 1 295 1 480 2 013 3 400 - 4 108 166 259 495 703 1 121 1 739 2 940 5 770 25 - 7 strands 166 259 495 703 1 211 1 739 2 040 5 770 26 7 strands 123 192 342 608 888 1 406 2 196 2 501			1 × 2 74													
10 . 7x 1.33 50 77 140 209 322 518 592 814 1 380 2 700 5 300 . 6 08 105 190 276 444 703 814 1 110 1 880 3 690 16 . 7x 1.68 .			1 X Z./ 4		7 X 1.04											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10				7 x 1.33											5 300
10 19 x 1.04 77 119 224 323 516 814 925 1 258 2 130 4 180 - 4 108 168 316 444 703 1 110 1 295 1 739 2 940 5 770 25 - 7 strands 123 192 354 518 798 1 295 1 480 2 013 3 400 35 2 7 strands 166 259 495 703 1 121 1 739 2 013 2 684 4 540 - 1 219 342 608 888 1 406 2 196 2 501 3 355 5 6 70 50 - 19 strands 333 543 1 036 1 406 2 196 2 501 3 355 5 307 70 2/0 19 strands 333 543 1 036 1 406 2 257 3 477 3 965 5 307 - 3/0 - 432 684 1 221 1 776 2 775 4 392 5 002 - - - - <t< td=""><td>-</td><td>6</td><td></td><td></td><td></td><td>68</td><td>105</td><td>190</td><td>276</td><td>444</td><td>703</td><td>814</td><td>1 1 1 0</td><td>1 880</td><td>3 690</td><td></td></t<>	-	6				68	105	190	276	444	703	814	1 1 1 0	1 880	3 690	
· 4 108 168 316 444 703 1 110 1 295 1 739 2 940 5 770 25 · 7 strands 123 192 354 518 798 1 295 1 480 2 013 3 400 35 2 7 strands 166 259 495 703 1 121 1 739 2 013 2 684 4 540 · 1 219 342 608 888 1 406 2 196 2 501 3 355 5 670 50 · 19 strands 237 370 740 1 036 1 628 2 562 2 928 3 904 · 1/0 272 425 777 1 147 1 813 2 867 3 294 4 392 70 2/0 19 strands 333 543 1 036 1 406 2 257 3 477 3 965 5 307 · 3/0 - 432 684 1 221 1 776 2 775 4 392 5 002 95 · 19 strands 568 925	16															
25 . 7 strands 123 192 354 518 798 1 295 1 480 2 013 3 400 35 2 7 strands 166 259 495 703 1 121 1 739 2 013 2 684 4 540 - 1 219 342 608 888 1 406 2 196 2 501 3 355 5 670 50 - 19 strands 237 370 740 1 036 1 628 2 562 2 928 3 904 - 1/0 272 425 777 1 147 1 813 2 867 3 294 4 392 70 2/0 19 strands 333 543 1 036 1 406 2 257 3 477 3 965 5 307 - 3/0 432 684 1 221 1 776 2 775 4 392 5 002 95 - 19 strands 568 925 1 776 2 318 4 144 - 250 MCM 19 strands 568 925 1 776 2 318 4 144		4			19 x 1.04											
35 2 7 strands 166 259 495 703 1 121 1 739 2 013 2 684 4 540 . 1 219 342 608 888 1 406 2 196 2 501 3 355 5 670 50 . 19 strands 237 370 740 1 036 1 628 2 562 2 928 3 904 . 1/0 272 425 777 1 147 1 813 2 867 3 294 4 392 70 2/0 19 strands 333 543 1 036 1 406 2 257 3 477 3 965 5 307 . 3/0 432 684 1 221 1 776 2 775 4 392 5 002 . 3/0 432 648 1 221 1 776 2 775 4 392 5 002 . 4/0 1 369 1 813 2 979 4 453 5 124 . . 4/0 568 925 1 776 2 318 4 144 . 250 MCM 645 1 036 1 850 </td <td></td> <td></td> <td></td> <td>7 strands</td> <td></td> <td>5770</td> <td></td>				7 strands											5770	
- 1 219 342 608 888 1 406 2 196 2 501 3 355 5 670 50 - 19 strands 237 370 740 1 036 1 628 2 562 2 928 3 904 - 1/0 272 425 777 1 147 1 813 2 867 3 294 4 392 70 2/0 19 strands 333 543 1 036 1 406 2 257 3 477 3 965 5 307 - 3/0 432 684 1 221 1 776 2 775 4 392 5 002 95 - 19 strands 444 740 1 369 1 813 2 979 4 453 5 124 - 4/0 546 851 1 517 2 196 3 441 5 429 120 - 19 strands 568 925 1 776 2 318 4 144 - 250 MCM 645 1 036 1 850 2 684 4 209 150 150 300 MCM 19 strands 703 1 184 2 738 </td <td></td>																
- 1/0 272 425 777 1 147 1 813 2 867 3 294 4 392 70 2/0 19 strands 333 543 1 036 1 406 2 257 3 477 3 965 5 307 - 3/0 432 684 1 221 1 776 2 775 4 392 5 002 95 - 19 strands 444 740 1 369 1 813 2 979 4 453 5 124 - 4/0 546 851 1 517 2 196 3 441 5 429 120 - 19 strands 568 925 1 776 2 318 4 144 - 250 MCM 645 1 036 1 850 2 684 4 209 150 300 MCM 19 strands 703 1 184 2 220 2 867 4 880 185 350 MCM 37 strands 888 1 443 2 738 3 660 5 856 - 400 MCM 1036 1 628 2 928 4 270 240 - 37 strands 1 84 1 924<																
70 2/0 19 strands 333 543 1 036 1 406 2 257 3 477 3 965 5 307 · 3/0 432 684 1 221 1 776 2 775 4 392 5 002 95 · 19 strands 444 740 1 369 1 813 2 979 4 453 5 124 · 4/0 546 851 1 517 2 196 3 441 5 429 120 · 19 strands 568 925 1 776 2 318 4 144 · 250 MCM 645 1 036 1 850 2 684 4 209 150 300 MCM 19 strands 703 1 184 2 220 2 867 4 880 185 350 MCM 37 strands 888 1 443 2 738 3 660 5 856 · 400 MCM 1036 1 628 2 928 4 270 240 - 37 strands 1 184 1 924 3 552 4 758 - 500 MCM 1 295 2 035 3 626 5 246 300 - 37 strands	50	-		19 strands			370	740	1 036	1 628	2 562	2 928	3 904			
- 3/0 432 684 1 221 1 776 2 775 4 392 5 002 95 - 19 strands 444 740 1 369 1 813 2 979 4 453 5 124 - 4/0 546 851 1 517 2 196 3 441 5 429 120 - 19 strands 568 925 1 776 2 318 4 144 - 250 MCM 645 1 036 1 850 2 684 4 209 150 300 MCM 19 strands 703 1 184 2 220 2 867 4 880 185 350 MCM 37 strands 888 1 443 2 738 3 660 5 856 - 400 MCM 1036 1 628 4 270 2 928 4 270 240 - 37 strands 1 184 1 924 3 552 4 758 - 500 MCM 1 295 2 035 3 626 5 246 300 600 MCM 61 strands 1 480 2 368 4 209 - 700 MCM 1 830 2 849				10												
95 . 19 strands 444 740 1 369 1 813 2 979 4 453 5 124 . 4/0 546 851 1 517 2 196 3 441 5 429 120 . 19 strands 568 925 1 776 2 318 4 144 . 250 MCM 645 1 036 1 850 2 684 4 209 150 300 MCM 19 strands 703 1 184 2 220 2 867 4 880 185 350 MCM 37 strands 888 1 443 2 738 3 660 5 856 . 400 MCM 1036 1 628 2 928 4 270 240 . 37 strands 1 184 1 924 3 552 4 758 . 500 MCM 1 295 2 035 3 626 5 246 5 246 300 600 MCM 61 strands 1 480 2 368 4 209 5 063				19 strands									5 30/			
- 4/0 546 851 1 517 2 196 3 441 5 429 120 - 19 stronds 568 925 1 776 2 318 4 144 - 250 MCM 645 1 036 1 850 2 684 4 209 150 300 MCM 19 stronds 703 1 184 2 220 2 867 4 880 185 350 MCM 37 stronds 888 1 443 2 738 3 660 5 856 - 400 MCM 1036 1 628 2 928 4 270 240 - 37 stronds 1 184 1 924 3 552 4 758 - 500 MCM 1 295 2 035 3 626 5 246 300 600 MCM 61 stronds 1 480 2 368 4 209 - 700 MCM 1 830 2 849 5 063				19 strands												
120 - 19 strands 568 925 1 776 2 318 4 144 - 250 MCM 645 1 036 1 850 2 684 4 209 150 300 MCM 19 strands 703 1 184 2 220 2 867 4 880 185 350 MCM 37 strands 888 1 443 2 738 3 660 5 856 - 400 MCM 1 036 1 628 2 928 4 270 240 - 37 strands 1 184 1 924 3 552 4 758 - 500 MCM 1 295 2 035 3 626 5 246 5 246 300 600 MCM 61 strands 1 480 2 368 4 209 - 700 MCM 1 830 2 849 5 063				Silando								+				
150 300 MCM 19 strands 703 1 184 2 220 2 867 4 880 185 350 MCM 37 strands 888 1 443 2 738 3 660 5 856 - 400 MCM 1 036 1 628 2 928 4 270 240 - 37 strands 1 184 1 924 3 552 4 758 - 500 MCM 1 1 844 1 924 3 552 4 758 - 500 MCM 61 strands 1 480 2 368 4 209 - 700 MCM 1 830 2 849 5 063	120	-		19 strands												
185 350 MCM 37 strands 888 1 443 2 738 3 660 5 856 - 400 MCM 1036 1 628 2 928 4 270 240 - 37 strands 1 184 1 924 3 552 4 758 - 500 MCM 1 184 1 924 3 552 4 758 - 500 MCM 61 strands 1 480 2 368 4 209 - 700 MCM 1 830 2 849 5 063																
- 400 MCM 1036 1 628 2 928 4 270 240 - 37 strands 1 184 1 924 3 552 4 758 - 500 MCM 1 295 2 035 3 626 5 246 300 600 MCM 61 strands 1 480 2 368 4 209 - 700 MCM 1 830 2 849 5 063																
240 - 37 stronds 1 184 1 924 3 552 4 758 - 500 MCM 1 295 2 035 3 626 5 246 300 600 MCM 61 stronds 1 480 2 368 4 209 - 700 MCM 1 830 2 849 5 063				37 strands						5 856						
- 500 MCM 1 295 2 035 3 626 5 246 300 600 MCM 61 strands 1 480 2 368 4 209 - 700 MCM 1 830 2 849 5 063				37 strands												
- 700 MCM 1 830 2 849 5 063																
				61 strands		1 480	2 368	4 209								
400 / 50 MCM 61 strands 1952 3 050 5 429				()												
	400	750 MCM		61 strands		1 952	3 050	5 429								

As per standard IEC 60228 (or NF C 32-018): Class 1 (or A) Class 2 (or B) Class 5 (or C) Class 6 (or D)

Note: The nominal stranding compositions indicated in the table above (and in all pages of all OMERIN catalogues) are indicative.

The number and/or diameter of the strand(s) may vary within the limits defined by the applicable standard(s). Only the maximum linear resistance at 20°C is the guaranty of compliance with the standard.

Stranding compositions in bold are preferential; the others are given for informational purposes and are not available on standard products.

www.omerin.com

Main properties of metals commonly used by OMERIN SAS:

Type of metal	OMERIN name	Continuous operating temperature °C	Peak temperature °C	Melt temperature °C	Density at 20 °C g.cm ⁻³	Volume electrical resistivity at 20 °C. μΩ.cm	Resistance varia- tion coefficient (a) at 20 °C 10 ⁻³ .K ⁻¹	Thermal conductivity at 20 °C W.m ⁻¹ .K ⁻¹	Specific heat capacity J.kg ⁻¹ ·K ⁻¹	Linear dilation coefficient from +20 °C to +100 °C 10 ⁻⁶ .K ⁻¹	Tensile strength Rm MPa
Bare copper	CuA1	180	400	1 083	8.89	1.7241	3.93	389	385	16.8	230
Deoxidised bare copper	CuC1	180	400	1 083	8.89	1.7241	3.93	389	385	16.8	230
Tin-plated copper	CuSn	180	300	1 083	8.89	1.7654 to 1.8508	3.66 to 3.84	386	385	16.8	230
Silver-plated copper	CuAg	200	450	1 083	8.91 to 9.05	1.7241	3.93 to 3.95	389	385	16.8	230
Nickel-plated copper	CuNi	300	500	1 083	8.89	1.7960	3.95	386	387	16.7	240
27% nickel-plated copper	CuNi27%	450	700	1 083	8.89	2.4284	4.22	359	404	15.8	240
Nickel	Ni	600	900	1 455	8.9	9.1	5.37	70	456	13	400
Nickel Chrome 80/20	NiCr80/20	1 000	1 200	1 400	8.35	108	0.06	11.3	450	17.5	800
Aluminium	Alu	120	200	660	2.7	2.8264	4.03	237	890	22	130
Galvanized steel	Galva	600	900	1 455	7.9	73	4	16.3	460	18	850
Stainless steel (AISI 304)	SS 304	600	900	1 455	7.9	73	4	16.3	460	18	850

Maximum linear resistance of cores at 20°C As per IEC 60228

						Maximum line	ar resistance of co (Ω/km)	re at 20 °C	_		_	
		Class 1			Class 2			Class 5			Class 6	
Nominal cross-section mm ²	Bare strands	Strands coated with metal layer	Minimum number of strands in core	Bare strands	Strands coated with metal layer	Aluminium strands	Max. strand diameter in core (mm)	Bare strands	Strands coated with metal layer	Max. strand diameter in core (mm)	Bare strands	Strands coated with metal layer
0.5	36.0	36.7	7	36.0	36.7		0.21	39.0	40.1	0.16	39.0	40.1
0.75	24.5	24.8	7	24.5	24.8	-	0.21	26.0	26.7	0.16	26.0	26.7
1	18.1	18.2	7	18.1	18.2		0.21	19.5	20.0	0.16	19.5	20.0
1.5	12.1	12.2	7	12.1	12.2		0.26	13.3	13.7	0.16	13.3	13.7
2.5	7.41	7.56	7	7.41	7.56		0.26	7.98	8.21	0.16	7.98	8.21
4	4.61	4.70	7	4.61	4.70		0.31	4.95	5.09	0.16	4.95	5.09
6	3.08	3.11	7	3.08	3.11	-	0.31	3.30	3.39	0.21	3.30	3.39
10	1.83	1.84	7	1.83	1.84	3.08	0.41	1.91	1.95	0.21	1.91	1.95
16	1.15	1.16	7	1.15	1.16	1.91	0.41	1.21	1.24	0.21	1.21	1.24
25	-	-	7	0.727	0.734	1.20	0.41	0.780	0.795	0.21	0.780	0.795
35		-	7	0.524	0.529	0.868	0.41	0.554	0.565	0.21	0.554	0.565
50	-	-	19	0.387	0.391	0.641	0.41	0.386	0.393	0.31	0.386	0.393
70		-	19	0.268	0.270	0.443	0.51	0.272	0.277	0.31	0.272	0.277
95		-	19	0.193	0.195	0.320	0.51	0.206	0.210	0.31	0.206	0.210
120		-	37	0.153	0.154	0.253	0.51	0.161	0.164	0.31	0.161	0.164
150	-	-	37	0.124	0.126	0.206	0.51	0.129	0.132	0.31	0.129	0.132
185		-	37	0.0991	0.100	0.164	0.51	0.106	0.108	0.41	0.106	0.108
240	-		37	0.0754	0.0762	0.125	0.51	0.0801	0.0817	0.41	0.0801	0.0817
300			61	0.0601	0.0607	0.100	0.51	0.0641	0.0654	0.41	0.0641	0.0654
400			61	0.0470	0.0475	0.0778	0.51	0.0486	0.0495			-

www.omerin.com

Maximum linear resistance of cores at 20°C As per NF C 32-018

						м	aximum linear re	esistance of co Ω/km)	ore at 20 °C					
		Class A					Class B					Class C		
Nominal cross-section mm ²	Indicative stranding	Bare or silver- coated strands	Tin-plated strands	Nickel- plated strands	Indicative stranding	Min. number of strands in core	Bare or silver- coated strands	Tin-plated strands	Nickel- plated strands	Indicative stranding	Max. strand diameter in core (mm)	Bare or silver- coated strands	Tin-plated strands	Nickel-plated strands
0.03	1 x 0.20	599	616	662				-				-	-	
0.05	1 x 0.25	384	394	424			-	-	-			-	-	
0.055			-		7 x 0.10	7	373	391	419			-	-	
0.06			-				-	-	-	15 x 0.07	0.08	356	372	399
0.08	1 x 0.32	230	234	252	7 x 0.12	7	252	259	279	10 x 0.10	0.11	261	274	293
0.12	1 x 0.40	146	148	160	7 x 0.15	7	161	166	178	15 x 0.10	0.11	174	182	195
0.15			-			-	-	-		19 x 0.10	0.11	136	143	153
0.20	1 x 0.50	93.1	95.0	102	-	-	-	-	-		-	-	-	
0.22			-		7 x 0.20	7	89.9	92.5	99.4	19 x 0.12	0.13	92.0	94.6	102
0.28	1 x 0.60	64.7	65.9	71.0		-	-	-	-	-	-	-	-	-
0.34	-		-		7 x 0.25	7	57.5	59.2	63.6	19 x 0.15	0.16	58.9	60.6	65.1
0.40	-		-		-	-	-	-	-	12 x 0.20	0.21	52.4	53.9	58.0
0.50	1 x 0.80	36.0	36.7	39.5	7 x 0.30	7	39.6	40.7	43.8	16 x 0.20	0.21	39.0	40.1	43.1
0.60			-	-			-	-	-	19 x 0.20	0.21	32.8	33.7	36.3
0.64	1 x 0.90	28.5	29.0	31.2			-	-	-			-	-	
0.75			-				-	-	-	24 x 0.20	0.21	26.0	26.7	28.7
0.80	1 x 1.00	23.1	23.3				-	-	-			-	-	
0.93			-		19 x 0.25	19	21.0	21.6	23.2			-	-	
1.00	1 x 1.13	18.1	18.2	-			-	-	-	32 x 0.20	0.21	19.5	20.0	21.5
1.13	1 x 1.20	16.0	16.2		-		-	-	-			-	-	
1.34			-		19 x 0.30	19	14.6	15.0	16.1			-	-	-
1.50	-		-		-	-	-	-	-	30 x 0.25	0.26	13.3	13.7	14.7
1.91			-		27 x 0.30	27	10.3	10.6	11.3			-	-	-
2.61			-		37 x 0.30	37	7.49	7.70	8.28		-	-	-	

(Maximum lined	ar resistance c (Ω/km)	of core at 20 °C	
			Class D		
Nominal cross-section mm ²	Indicative stranding	Max. strand diameter in core (mm)	Bare or silver- coated strands	Tin-plated strands	Nickel-plated strands
0.03		-	-	-	
0.05		-	-	-	
0.055	27 x 0.05	0.06	387	405	434
0.06		-	-	-	
0.08	19 x 0.07	0.08	281	294	315
0.12	30 x 0.07	0.08	178	186	199
0.15	37 x 0.07	0.08	143	149	160
0.20		-	-	-	-
0.22	27 x 0.10	0.11	95.9	100	108
0.28	-	-	-	-	-
0.34	30 x 0.12	0.13	58.3	59.9	64.4
0.40		-	-	-	-
0.50	28 x 0.15	0.16	39.6	40.7	43.8
0.60			-	-	
0.64		-	-	-	-
0.75	42 x 0.15	0.16	26.4	27.1	29.2
0.80		-	-	-	-
0.93	-	-	-	-	-
1.00	56 x 0.15	0.16	19.8	20.4	21.9
1.13		-	-	-	-
1.34		-		-	
1.50	83 x 0.15	0.16	13.3	13.7	14.8
1.91		-		-	
2.61		-	-		

Maximum linear resistance of cores at 20°C As per UL 1581

	Maxim	num linear resistance of core a (Ω/km)	20 °C
Nominal cross-section (mm ²)	Single-strand bare copper conductor UL 1581 - Table 30.1	Single-strand tin-plated copper conductor UL 1581 - Table 30.2	Multi-strand bare copper conductor UL 1581 - Table 30.3
30 AWG	347	361	354
29 AWG	271	282	277
28 AWG	218	227	223
27 AWG	172	179	175
26 AWG	138	143	140
25 AWG	108	112	111
24 AWG	85.9	89.3	87.6
23 AWG	67.9	70.6	69.2
22 AWG	54.3	56.4	55.4
21 AWG	42.7	44.4	43.6
20 AWG	33.9	35.2	34.6
19 AWG	26.9	28.0	27.4
18 AWG	21.4	28.0	21.8
17 AWG	16.9	17.6	17.3
16 AWG	13.5	14.0	13.7
15 AWG	10.6	11.1	10.9
14 AWG	8.45	8.78	8.62
13 AWG	6.69	6.97	6.82
12 AWG	5.31	5.53	5.43
11 AWG	4.22	4.39	4.30
10 AWG	3.343	3.476	3.409
9 AWG	2.652	2.730	2.705
8 AWG	2.102	2.163	2.144
7 AWG	1.667	1.716	1.700
6 AWG	1.323	1.361	1.348
5 AWG	1.049	1.079	1.070
4 AWG	0.8315	0.8559	0.8481
3 AWG	0.6595	0.6788	0.6727
2 AWG	0.5231	0.5384	0.5335
1 AWG	0.4146	0.4268	0.4230
1/0 AWG	0.3287	0.3367	0.3354
2/0 AWG	0.2608	0.2670	0.2660
3/0 AWG	0.2069	0.2119	0.2110
4/0 AWG	0.1640	0.1680	0.1673
250 kcmil	-	-	0.1416
300 kcmil	-	-	0.1180
350 kcmil	-	-	0.1011
400 kcmil	-	-	0.08851
450 kcmil	-	-	0.07867
500 kcmil		-	0.7080
550 kcmil		-	0.06436
600 kcmil	-	-	0.05900
650 kcmil	-	-	0.05447
700 kcmil	-	-	0.05057
750 kcmil	-		0.04721
800 kcmil	-	-	0.04425
900 kcmil			0.03933
1000 kcmil		-	0.03540

Conductor metal	Strand diameter (mm)	Correction coefficient Kc
CuA1 (as per ASTM B 3)		1
CuAg (as per ASTM B 298)		1
	0.076 ≤ Ø < 0.28	0.9315
CuSn	0.28 ≤ Ø < 0.51	0.9416
(as per ASTM B 33)	0.51 ≤ Ø < 2.6	0.9616
	$2.6 \le \emptyset < 7.4$	0.9716
	$7.4 \le \emptyset < 11.7$	0.9766
CuNi (as per ASTM B 355)		0.96
CuNi27% (as per ASTM B 355)	-	0.71

To determine the maximum linear resistance at 20 $^\circ \rm C$ of the cores made of the metals above, the following formula is applied:

Rlinmax metal = **R**linmax CuA1 / **Kc**

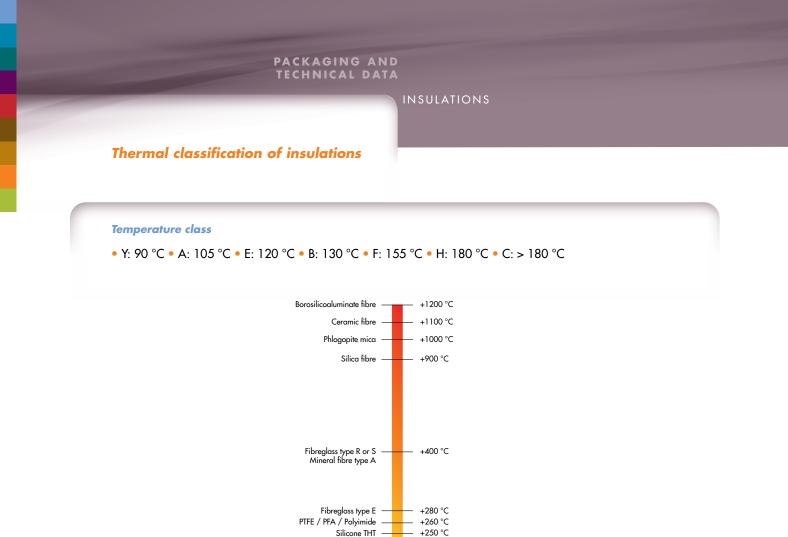
www.omerin.com

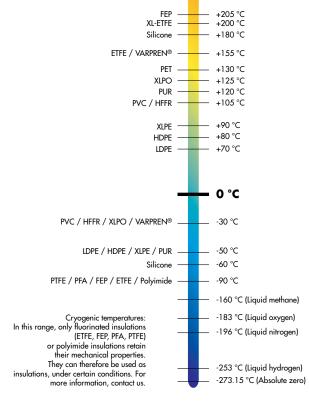
INSULATIONS

Main properties of insulation materials commonly used by OMERIN SAS:

			Polyethylene										
Properties	Polyvinyl chloride	low density	high density	Chemically cross-linked	Halogen-free polyolefine	Polyurethane	Ethylene tetrafluoro- ethylene	Fluorethylene propylene	Perfluoro- alkoxy alkane	Polytetrafluoro- ethylene	Polyimide	Silicone rubber	VARPREN®
	PVC	LDPE	HDPE	XLPE	HFFR	PUR	ETFE	FEP	PFA	PTFE	PI	SIR	VARPREN®
Physical													
Operating temperature:													
- at low temperature (°C)	-30	-50	-50	-50	-30	-50	-90	-90	-90	-90	-90	-60	-30
 in continuous operating service (°C) 	+105	+70	+80	+90	+105	+120	+150	+205	+260	+260	+260	+180	+155
- in short circuit state (°C)	+160	+150	+180	+250	+160	+180	+200	+250	+300	+300	+350	+350	+200
Density (g/cm ³)	1.23 to 1.50	0.91	0.93	0.91	1.5	1.11 to 1.18	1.75	2.15	2.15	2.15	1.67	1.20 to 1.50	1.45 to 1.57
Electrical													
Dielectric strength (kV/mm)	30	20	20	25	20	20	36	24	25	25	28	25	15
Electrical resistance (Q.cm)	1 016	1 017	1 017	1 017	1 015	1 015	1 016	1 018	1 018	1 018	1015	1 015	1014
Relative permittivity at industrial frequency	8	2.3	2.3	2.5	3.6	6	2.6	2.1	2.05	2	2.7	3.22 to 3.67	5
tan δ at industrial frequency (x 10^-4)	1 000	10	10	40	20	300	2	3	2	2	13	37 to 258	200
Chemical													
Resistance to weak acids	Very good	Very good	Very good	Very good	Fair	Very good	Very good	Very good	Very good	Very good	Very good	Good	Good
Resistance to weak alkalis	Very good	Very good	Very good	Very good	Fair	Very good	Very good	Very good	Very good	Very good	Good	Good	Good
Mechanical													
Flexibility	Good	Medium	Poor	Medium	Poor	Good	Medium	Medium	Good	Poor	Medium	Excellent	Excellent
Resistance to abrasion.	Good	Medium	Good	Good	Good	Excellent	Excellent	Medium	Good	Good	Excellent	Good	Good
Tensile strength (MPa)	15	10	20	22	12	50	45	20	27.5	40	18	5	6
Elongation at break (%)	250	400	500	300	180	350	200	250	300	350	70	200	300
Other													
Flame resistance	Medium	Poor	Poor	Poor	Excellent	Medium	Excellent	Excellent	Excellent	Excellent	Excellent	Good	Good
Halogen-free	No	Yes	Yes	Yes	Yes	Yes	No	No	No	No	No	Yes	Yes
Thermal resistivity (K.m/W)	5	3.5	3.5	3.5	5	5	4.4	5	4.4	4.5	5	5	5
Steam resistance	Poor	Poor	Poor	Fair	Poor	Poor	Good	Excellent	Excellent	Excellent	Fair	Good	Poor

Note: The information given above is purely indicative and testing under operating conditions as close as possible to reality is preferable. In no event shall OMERIN be held liable. Our technical departments are at your service to provide any clarifications required.


Resistance fluorinated insulation to chemical products


	FEP and PTFE	PFA	ETFE
Hydrocarbons (oils, petrol, greases, etc.) Weak acids	Excellent Excellent	Excellent Excellent	Excellent Excellent
Strong acids	Excellent	Excellent	Very good (except for highly oxidant acids when boiling)
Weak alkalis	Excellent	Excellent	Excellent
Strong alkalis	Very good (except hot alkaline metals)	Excellent	Very good (except very strong alkalis at high temperatures)
Organic solvents	Very good except some halogenated solvents that may cause softening at high temperature and pressure.	Excellent	Excellent

Fluorinated insulation materials are known to be highly resistant to chemical products such as solvents or hydrocarbons, but they are also capable of resisting all other types of aggressive or corrosive environments. The table below indicates the degrees of resistance of fluorinated insulation materials to chemical products with varying corrosive properties. For further information about fluorinated insulation materials, contact our technical department.

www.omerin.com

www.omerin.com

General

Introduction

The heat produced by the Joule effect when a current flows through the conductor core, is conducted by the various external insulating layers to be finally dissipated by the external cable environment.

This dissipation of heat via the external environment of the cable is done either by:

- convection and radiation if the cable is installed in the open air.
- conduction if the cable is in contact with other elements or materials.

When the thermal losses produced are equal to the thermal losses dissipated in the surrounding medium, a state of balance is achieved, characterised by a constant core temperature (steady state). This temperature must not exceed the maximum supported by the insulation, to ensure the cable has an optimum lifetime.

The maximum permissible current under continuous operation is the current strength value which, for a clearly defined cable environment, provokes the heating of the conductor cores to the maximum permitted value.

Calculations of permissible current as per IEC 60287

Title of IEC 60287

"Calculation of the continuous current rating of cables (100% load factor)"

Field of application of IEC 60287

This standard only concerns the permanent use operation of cables for all alternating and direct voltages up to 5 kV, buried directly underground, installed in liners, gutters or steel tubes, as well as cables installed in the open air. In IEC 60287, "permanent use" is understood to mean the continuous circulation of a sufficient constant current (load factor 100%) to asymptomatically achieve the maximum conductor temperature, assuming that the conditions of the ambient environment remain unchanged.

Basic assumptions for calculating permissible currents under IEC 60287

- Copper or aluminium core(s).
- Insulation class "maximum temperature resistance of insulation"
- Insulated cable in open air resting on supports or flanges.
- Outer cable diameter less than 150 mm.
- Cable protected from direct sunlight.
- AC (F = 50 Hz) or DC ≤ 5000 V.
- Suitable thermal dissipation and ventilation in the immediate vicinity of the cable.
- No external heat sources in the immediate vicinity of the cable.

Observations

The values indicated in the tables, graphs or calculations are indicative and theoretical.

They must only be used as estimations or as a starting point for a more detailed experimentation plan.

Indeed, these values can vary significantly according to core stranding options, the type of insulation, the number of conductors, the environmental conditions, the conditions of installation, etc.

Our technical departments are at your service for further and more detailed analyses.

ww.omerin.com

PERMISSIBLE CURRENTS

Complements

Correction factors

The calculations of maximum permissible current strength according to IEC 60287 result in graph curves that can be downloaded directly from our website, www.omerin.com. Today a large majority of OMERIN products have their own maximum permissible current graphs. However, if you are unable to find the right one or access the graphs, please contact us.

These graphs are given for specific cable installation conditions (blue box on upper right of graph: see basic assumptions on previous page). For other conditions of installation, you may apply the correction factors given below.

Correction factors for several single-core cables or multicore cables

	Correction factors Number of single or multicore cables										
Layout of sealed cables	2	3	4	5	6	7	8	9	12	16	20
Enclosed	0.8	0.7	0.65	0.6	0.55	0.55	0.5	0.5	0.45	0.4	0.4
Single layer on walls or floors or non-perforated trays	0.85	0.79	0.75	0.73	0.72	0.72	0.71	0.7	0.7	0.7	0.7
Single layer on ceiling	0.85	0.76	0.72	0.69	0.67	0.66	0.65	0.64	0.64	0.64	0.64
Single layer on perforated horizontal or vertical trays	0.88	0.82	0.77	0.75	0.73	0.73	0.72	0.72	0.72	0.72	0.72
Single layer on cable raceways, gutters, welded frames, etc.	0.88	0.82	0.8	0.8	0.79	0.79	0.78	0.78	0.78	0.78	0.78

Correction factors for installation in several layers

Number of layers	1	2	3	4	5	6	7	8	>9
Coefficient	1	0.8	0.73	0.7	0.7	0.68	0.68	0.68	0.66

www.omerin.com

The information provided in this technical data sheet is indicative and may be modified without prior notice, laying, wiring and electrical conditions and the environment of the cable can not be fully considered in our studies. In no way the company OMERIN shall be held responsible for any incidents in the case of inappropriate uses, particularly in the case of wiring conditions that do not respect the good practice and the standards in force. For an optimum use of the cables produced by our company, we recommend testing in real conditions. Our sales department is available for a possible provision of samples, and/or for the conditions of a complete study in our laboratories. @ Registered trademark of the OMERIN Group. Drawings and photos are not contractual. Reproduction is prohibited without the prior agreement of OMERIN.

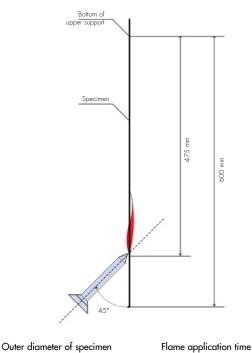
To select the correct dimensioning of your cables, apply the following formula and select the dimensions according to the correction:

 $I_{corrected} = (I_{application} / K) / (number of cables per phase)$

Equivalences between standards

		Standards		
	NF	EN	IEC	
FIRE RESISTANCE	_		_	
Circuit integrity			60331-1	Test method for fire with shock at a temperature of at least 830 °C for cables of rated vol
			(0001.0	up to and including 0.6/1.0 kV and with an overall diameter exceeding 20 mm
			60331-2	Test method for fire with shock at a temperature of at least 830 °C for cables of rated vo up to and including 0.6/1.0 kV and with an overall diameter not exceeding 20 mm
			60331-3	Test method for fire with shock at a temperature of at least 830 °C for cables of rated vo
			60331-11	up to and including 0.6/1.0 kV tested in a metal enclosure Apparatus - Fire alone at a flame temperature of at least 750 °C
			60331-21	Procedures and requirements - Cables of rated voltage up to and including 0.6/1.0 kV
			60331-23	Procedures and requirements - Electric data cables
R1 test	C 32-070		60331-25	Procedures and requirements - Optical fibre cables Tests for classification of conductors and cables with respect to their fire behaviour
st on small conductors	C 32-076	50200		Method of test for resistance to fire of unprotected small cables for use
				in emergency circuits
est on large conductors	C 32-077	50362		Method of test for resistance to fire of larger unprotected power and control cables for use in emergency circuits
LAME PROPAGATION	4		-	
able alone:				
ertical flame	C 32-078-1-1	60332-1-1	60332-1-1	Test for a vertical flame propagation for a single insulated wire or cable -
	C 32-078-1-2	60332-1-2	60332-1-2	Apparatus Test for vertical flame propagation for a single insulated wire or cable -
	C 32-078-1-3	60332-1-3	60332-1-3	Procedure for 1 kW pre-mixed flame Test for vertical flame propagation for a single insulated wire or cable -
	C 32-07 6-1-3	00332-1-3	00332-1-3	Procedure for determination of flaming droplets/particles
2 test	C 32-070			Tests for classification of conductors and cables with respect to their fire behaviour
rtical flame on small conductor	C 32-078-2-1	60332-2-1	60332-2-1	Test for vertical flame propagation for a single small insulated wire or cable - Apparatus
	C 32-078-2-2	60332-2-2	60332-2-2	Test for vertical flame propagation for a single small insulated wire or cable - Procedure for diffusion flame
unched cable:	C 20.070 2 10	(0000.0.10	(00000010	
	C 32-078-3-10	60332-3-10	60332-3-10	Test for vertical flame spread of vertically-mounted bunched wires or cables - Apparatus
	C 32-078-3-21	60332-3-21	60332-3-21	Test for vertical flame spread of vertically-mounted bunched wires or cables -
	C 32-078-3-22	60332-3-22	60332-3-22	Category A F/R Test for vertical flame spread of vertically-mounted bunched wires or cables -
	C 32-07 0-3-22	00002-0-22	00332-3-22	Category A
	C 32-078-3-23	60332-3-23	60332-3-23	Test for vertical flame spread of vertically-mounted bunched wires or cables -
	C 32-078-3-24	60332-3-24	60332-3-24	Category B Test for vertical flame spread of vertically-mounted bunched wires or cables -
		00002021	00002021	Category C
	C 32-078-3-25	60332-3-25	60332-3-25	Test for vertical flame spread of vertically-mounted bunched wires or cables - Category D
IRE PROPAGATION			_	
1 test	C 32-070			Tests to classify conductors and cables according to their fire behaviour -
	C 32-07 0		_	C1 test
MOKE DENSITY				
	C 32-073-1	61034-1	61034-1	Test apparatus
	C 32-073-2	61034-2	61034-1	Test procedure and requirements
	X 10-702-1			Determination of the opacity of the fumes in an atmosphere without air renewal - Apparat
	X 10-702-2			Determination of the opacity of the fumes in an atmosphere without air renewal - Test meth
OMBUSTION GASES				
	C 32-074-1	60754-1	60754-1	Determination of halogen acid gas content
	C 32-074-2	60754-2	60754-2	Determination of acidity (by pH measurement)
	X 70 100			and conductivity
	X 70-100			Analysis of pyrolysis and combustion gases - Tubular furnace method
	X 70-101			Analysis of pyrolysis and compustion gases - Smoke chamber method
	X 70-101 C 20-453 C 20-454			Analysis of pyrolysis and combustion gases - Smoke chamber method Conventional determination of smoke corrosiveness Analysis and titrations of gases evolved during pyrolysis or combustion of materials

www.omerin.com


Description of some tests

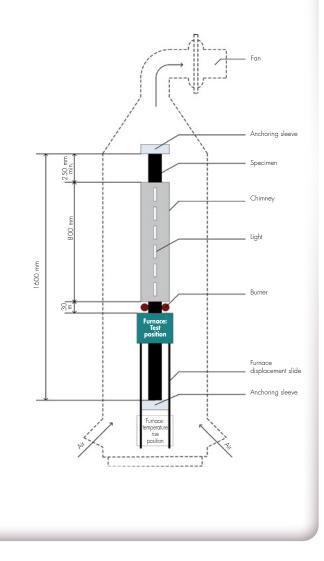
Test: Vertical flame spread on insulated cable as per IEC 60332-1-2 - Test C2 as per NF C 32-070

Length of specimen: 600 mm. Burner characteristics: as per IEC 60322-1-1 Properties of flame: 1 kW. Position of specimer: vertical Flame position: 45° from the vertical axis of the specimen and 475 mm from the bottom of the lower support. Flame application time: see table below.

Acceptance criteria:

- The cable must be self-extinguishing.
- The carbonised zone must not be within 50 mm of the bottom of the upper support. • The carbonised zone must not be more than 540 mm from the bottom of the
- upper support.

mm s $D \leq 25$ 60 25 < D ≤ 50 50 < D ≤ 75 120 240 D > 75 480


Note: When non-circular cables are tested (e.g. flat cables), the circumference is measured and used to calculate an equivalent diameter as if the cable was circular.

Test: Fire propagation - C1 test as per NF C 32-070

Length of specimen: 1600 mm. Number of sections per specimen: according to cable diameter Properties of flame: 1 kW. Position of specimen: vertical Test temperature: 800 °C. Duration: 30 min.

Acceptance criteria:

• The part of the specimen beyond the upper end of the chimney must present no traces of combustion.

www.omerin.com

EUROCLASSES

The new European reaction-to-fire classification⁽¹⁾ for cables as per the **Construction Products Regulation (CPR):** "EUROCLASSES"

Faced with all fire risks, in 2006 the European Union decided to include cables in the Construction Products Directive (CPD). A classification of fire reaction characteristics of cables was published in the Official Journal of the European Union on 27 October 2006 to endorse this decision. These Euroclasses relate to both power and communication cables, in all types of building - residential, commercial and industrial. The new classification represents significant progress for the safety of people and property, as it considers the overall performance of cables in a fire.

MORE ACCURATE CLASSIFICATION

Table 52A in standard NF C 15-100 currently lists the conductors and cables commonly used in an electrical installation. The table indicates especially the fire reaction characteristics for each cable (C1, C2 or C3). This French classification is set out by the Order of 21 July 1994 which, apart from the classes, lays down the certificate of compliance of the fire performance of electric conductors and cables. It is going to be replaced gradually by the European classification that will have seven classes: A, B1, B2, C, D, E and F, A is the most demanding level.

The public authorities must adapt the French regulations to the European requirements and amend the Order of 21 July 1994 to apply this new classification in France. The regulations on different types of building will then be reviewed to clarify the application of the Euroclasses. The Euroclasses will take time to become applicable. The tests on cables in terms of their fire performance must first be harmonised at European level. Several standards have therefore been prepared:

 Standard EN 50399, which defines the new test methods that supplement certain methods already in existence.

 Standard EN 13501-6, which translates the Euroclass classification. This is at the final voting stage in the relevant Technical Committee of the CEN.

• The "harmonised products" standard EN 50575, which sets out the essential requirements for the assessment and declaration of performance, the initial tests, the monitoring and the marking of products.

Once all these standards have been published and the public authorities have notified the European Commission about which bodies are approved for product certification, the certified products will then gradually appear in the marketplace bearing the CE markings and the statement of the Euroclass achieved. The French classification and the Euroclasses will operate side-byside for a certain period. Subsequently, the CE markings and performance declarations will be mandatory.

EUROCLASS	CLASSIFICATION CRITERIA	ADDITIONAL CRITERIA				
Aca	Fire load					
Blca		Smoke emissions				
B2 ^{ca}	Heat release +	(s1, s1a, s1b, s2, s3)				
Cca	Vertical spread in bunched cables + Flame spread	Flaming droplets (d0, d1, d2)				
Dca		Acidity (a1, a2, a3)				
Eca	Flame spread					
- ca						

EUROCLASS CLASSIFICATION CRITERIA

Fire load

- Aca = Non-combustible (glass, silica, etc.) B1ca = Combustible non-flammable B2ca = Combustible low flammability Cca = Combustible low flammability
- Dca = Combustible moderate flammability
- Eca = Combustible high flammability
- Fca = not classified

Smoke opacity

- (based on quantity and speed of production)
- s1 = small quantity and slow production speed
- s2 = moderate quantity and production speed
- s3 = large quantity and fast production speed s1a = results in better light transmittance than s1b

LES CABLES DE L'EXTREME

Flaming droplets and debris

d0: no debris

- d1: no debris that burns for more than ten seconds
- d2: debris that burns for more than ten seconds

Acidity and conductivity

- a1: low conductivity and low acidity of solubilised combustion gases a2: relatively low conductivity and low acidity of solubilised combustion gases
- a3: high conductivity and acidity of solubilised combustion gases

(1) Caution, the reaction to fire relates to the performance of the cable when it is burning. does not refer to its ability to do its work for a limited time in a fire (the term in this case is resistance to fire).

www.omerin.com

List of standards

ANSI/IEEE 38	13 IEEE Standard for Qualifying Class 1E Electric Cables and Field Splices for
	Nuclear Power Generating Stations
ASTM B 3	Standard Specification for Soft or Annealed Copper Wire
ASTM B 8	Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft
ASTM B33	Standard Specification for Tin-Coated Copper or Annealed Copper Wire for
	Electrical Purposes
ASTM B 160	Standard Specification for Nickel Rod and Bar
ASTM B 170	Standard Specification for Oxygen-Free Electrolytic Copper – Refinery Shapes
ASTM B 172	Standard Specification for Rope-Lay-Stranded Copper Conductors Having
ASTM B 173	Bunch-Stranded Members, for Electrical Conductors Standard Specification for Rope-Lay-Stranded Copper Conductors Having
ASIM D 175	Concentric-Stranded Members, for Electrical Conductors
ASTM B 174	Standard Specification for Bunch-Stranded Copper Conductors for
	Electrical Conductors
ASTM B 193	Standard Test Method for Resistivity of Electrical Conductor Materials
ASTM B 298	Standard Specification for Silver-Coated Soft or Annealed Copper Wire
ASTM B 355 ASTM D149	Standard Specification for Nickel-Coated Soft or Annealed Copper Wire Standard Test Method for Dielectric Breakdown Voltage and Dielectric
A3111 0147	Strength of Solid Electrical Insulating Materials at Commercial Power
	Frequencies
CSA C22.2 2	10 Appliance wiring material products
DIN 17740	Wrought nickel, chemical composition
DIN 17753	Wrought nickel and nickel alloy wires, characteristics
DIN 40620 DIN 40628	Varnished sleevings (flexible with textile) used for electrical insulation Sleevings based on silicone rubber
DIN 40628 DIN 43712	Sieevings based on silicone rubber Measurement and Control; electrical temperature sensors; wires for
5111 407 12	thermocouples
DIN 43713	Electrical temperature sensors; wires and stranded wires for extension and
	compensating cables
DIN 43714	Measurement and Control; electrical temperature sensors; compensating cables
DIN 43760	for thermocouples
	Measurement and Control: Electrical Temperature Sensors
HD 308	Identification of cores in cables and flexible cords
HD 308 HD 361	Identification of cores in cables and flexible cords System for cable designation
HD 308 HD 361 IEC 60079	Identification of cores in cables and flexible cords System for cable designation Electrical apparatus for explosive gas atmospheres
HD 361	System for cable designation
HD 361 IEC 60079 IEC 60085 IEC 60092	System for cable designation Electrical apparatus for explosive gas atmospheres Electrical insulation - Thermal evaluation and designation Electrical installations in ships
HD 361 IEC 60079 IEC 60085 IEC 60092 IEC 60189	System for cable designation Electrical apparatus for explosive gas atmospheres Electrical insulation - Thermal evaluation and designation Electrical installations in ships Low-frequency cables with PVC insulation and PVC sheath
HD 361 IEC 60079 IEC 60085 IEC 60092	System for cable designation Electrical apparatus for explosive gas atmospheres Electrical insulation - Thermal evaluation and designation Electrical installations in ships Low-frequency cables with PVC insulation and PVC sheath Polyvinyl chloride insulated cables of rated voltages up to and including
HD 361 IEC 60079 IEC 60085 IEC 60092 IEC 60189	System for cable designation Electrical apparatus for explosive gas atmospheres Electrical insulation - Thermal evaluation and designation Electrical installations in ships Low-frequency cables with PVC insulation and PVC sheath Polyvinyl chloride insulated cables of rated voltages up to and including 450/750 V
HD 361 IEC 60079 IEC 60085 IEC 60092 IEC 60189 IEC 60227	System for cable designation Electrical apparatus for explosive gas atmospheres Electrical insulation - Thermal evaluation and designation Electrical installations in ships Low-frequency cables with PVC insulation and PVC sheath Polyvinyl chloride insulated cables of rated voltages up to and including
HD 361 IEC 60079 IEC 60085 IEC 60092 IEC 60189 IEC 60227 IEC 60228	System for cable designation Electrical apparatus for explosive gas atmospheres Electrical insulation - Thermal evaluation and designation Electrical installations in ships Low-frequency cables with PVC insulation and PVC sheath Polyvinyl chloride insulated cables of rated voltages up to and including 450/750 V Conductors of insulated cables
HD 361 IEC 60079 IEC 60085 IEC 60092 IEC 60189 IEC 60227 IEC 60228 IEC 60245 IEC 60287 IEC 60331	System for cable designation Electrical apparatus for explosive gas atmospheres Electrical insulation - Thermal evaluation and designation Electrical installations in ships Low-frequency cables with PVC insulation and PVC sheath Polyvinyl chloride insulated cables of rated voltages up to and including 450/750 V Conductors of insulated cables Rubber insulated cables Rubber insulated cables - Rated voltages up to and including 450/750 V Electric cables - Calculation of the current rating Tests for electric cables under fire conditions - Circuit integrity
HD 361 IEC 60079 IEC 60085 IEC 60092 IEC 60189 IEC 60227 IEC 60228 IEC 60245 IEC 60287 IEC 60331 IEC 60332	System for cable designation Electrical apparatus for explosive gas atmospheres Electrical insulation - Thermal evaluation and designation Electrical installations in ships Low-frequency cables with PVC insulation and PVC sheath Polyvinyl chloride insulated cables of rated voltages up to and including 450/750 V Conductors of insulated cables Rubber insulated cables - Rated voltages up to and including 450/750 V Electric cables - Rated voltages up to and including 450/750 V Electric cables - Calculation of the current rating Tests for electric cables under fire conditions - Circuit integrity Tests on electric and optical fibre cables under fire conditions
HD 361 IEC 60079 IEC 60085 IEC 60092 IEC 60189 IEC 60227 IEC 60228 IEC 60245 IEC 60287 IEC 60331	System for cable designation Electrical apparatus for explosive gas atmospheres Electrical insulation - Thermal evaluation and designation Electrical installations in ships Low-frequency cables with PVC insulation and PVC sheath Polyvinyl chloride insulated cables of rated voltages up to and including 450/750 V Conductors of insulated cables Rubber insulated cables Rubber insulated cables - Rated voltages up to and including 450/750 V Electric cables - Calculation of the current rating Tests for electric cables under fire conditions Power cables with extruded insulation and their accessories for rated voltages
HD 361 IEC 60079 IEC 60085 IEC 60092 IEC 60189 IEC 60227 IEC 60228 IEC 60245 IEC 60287 IEC 60331 IEC 60332 IEC 60502	System for cable designation Electrical apparatus for explosive gas atmospheres Electrical insulation - Thermal evaluation and designation Electrical installations in ships Low-frequency cables with PVC insulation and PVC sheath Polyvinyl chloride insulated cables of rated voltages up to and including 450/750 V Conductors of insulated cables Rubber insulated cables - Rated voltages up to and including 450/750 V Electric cables - Calculation of the current rating Tests for electric cables under fire conditions - Circuit integrity Tests on electric and optical fibre cables under fire conditions Power cables with extruded insulation and their accessories for rated voltages from 1 kV (Um = 1.2 kV) up to 30 kV (Um = 36 kV)
HD 361 IEC 60079 IEC 60085 IEC 60092 IEC 60189 IEC 60227 IEC 60228 IEC 60245 IEC 60287 IEC 60331 IEC 60332	System for cable designation Electrical apparatus for explosive gas atmospheres Electrical insulation - Thermal evaluation and designation Electrical installations in ships Low-frequency cables with PVC insulation and PVC sheath Polyvinyl chloride insulated cables of rated voltages up to and including 450/750 V Conductors of insulated cables Rubber insulated cables Rubber insulated cables - Rated voltages up to and including 450/750 V Electric cables - Calculation of the current rating Tests for electric cables under fire conditions Power cables with extruded insulation and their accessories for rated voltages
HD 361 IEC 60079 IEC 60085 IEC 60092 IEC 60189 IEC 60227 IEC 60228 IEC 60245 IEC 60287 IEC 60331 IEC 60332 IEC 60502	System for cable designation Electrical apparatus for explosive gas atmospheres Electrical insulation - Thermal evaluation and designation Electrical installations in ships Low-frequency cables with PVC insulation and PVC sheath Polyvinyl chloride insulated cables of rated voltages up to and including 450/750 V Conductors of insulated cables Rubber insulated cables Rubber insulated cables - Rated voltages up to and including 450/750 V Electric cables - Calculation of the current rating Tests for electric cables under fire conditions - Circuit integrity Tests on electric and optical fibre cables under fire conditions Power cables with extruded insulation and their accessories for rated voltages from 1 kV (Um = 1.2 kV) up to 30 kV (Um = 36 kV) Thermocouples
HD 361 IEC 60079 IEC 60085 IEC 60092 IEC 60189 IEC 60227 IEC 60228 IEC 60245 IEC 60287 IEC 60331 IEC 60332 IEC 60502 IEC 60564 IEC 60551 IEC 60754	System for cable designation Electrical apparatus for explosive gas atmospheres Electrical insulation - Thermal evaluation and designation Electrical insulations in ships Low-frequency cables with PVC insulation and PVC sheath Polyvinyl chloride insulated cables of rated voltages up to and including 450/750 V Conductors of insulated cables Rubber insulated cables - Rated voltages up to and including 450/750 V Electric cables - Calculation of the current rating Tests for electric cables under fire conditions - Circuit integrity Tests on electric and optical fibre cables under fire conditions Power cables with extruded insulation and their accessories for rated voltages from 1 kV (Um = 1.2 kV) up to 30 kV (Um = 36 kV) Thermocouples Fire hazard testing Industrial platinum resistance thermometers Tests on gases evolved during combustion of materials from cables
HD 361 IEC 60079 IEC 60085 IEC 60092 IEC 60189 IEC 60227 IEC 60228 IEC 60245 IEC 60245 IEC 60331 IEC 60332 IEC 60502 IEC 60564 IEC 60751 IEC 60754 IEC 60811	System for cable designation Electrical apparatus for explosive gas atmospheres Electrical insulation - Thermal evaluation and designation Electrical installations in ships Low-frequency cables with PVC insulation and PVC sheath Polyvinyl chloride insulated cables of rated voltages up to and including 450/750 V Conductors of insulated cables Rubber insulated cables - Rated voltages up to and including 450/750 V Electric cables - Calculation of the current rating Tests for electric cables under fire conditions - Circuit integrity Tests on electric and optical fibre cables under fire conditions Power cables with extruded insulation and their accessories for rated voltages from 1 kV (Um = 1.2 kV) up to 30 kV (Um = 36 kV) Thermocouples Fire hazard testing Industrial platinum resistance thermometers Tests on gases evolved during combustion of materials from cables Electric and optical fibre cables - Test methods for nor-metallic materials
HD 361 IEC 60079 IEC 60085 IEC 60092 IEC 60189 IEC 60227 IEC 60228 IEC 60245 IEC 60287 IEC 60331 IEC 60332 IEC 60502 IEC 60564 IEC 60551 IEC 60754	System for cable designation Electrical apparatus for explosive gas atmospheres Electrical insulation - Thermal evaluation and designation Electrical installations in ships Low-frequency cables with PVC insulation and PVC sheath Polyvinyl chloride insulated cables of rated voltages up to and including 450/750 V Conductors of insulated cables Rubber insulated cables - Rated voltages up to and including 450/750 V Electric cables - Calculation of the current rating Tests for electric cables under fire conditions - Circuit integrity Tests on electric and optical fibre cables under fire conditions Power cables with extruded insulation and their accessories for rated voltages from 1 kV (Um = 1.2 kV) up to 30 kV (Um = 36 kV) Thermocouples Fire hazard testing Industrial platinum resistance thermometers Tests on gases evolved during combustion of materials from cables Electric and optical fibre cables - Test methods for nor-metallic materials Calculation of thermally permissible short-circuit currents, taking into account
HD 361 IEC 60079 IEC 60085 IEC 60092 IEC 60189 IEC 60227 IEC 60228 IEC 60245 IEC 60245 IEC 60287 IEC 60331 IEC 60332 IEC 60584 IEC 60584 IEC 60584 IEC 60754 IEC 60754 IEC 60754 IEC 60754	System for cable designation Electrical apparatus for explosive gas atmospheres Electrical insulation - Thermal evaluation and designation Electrical installations in ships Low-frequency cables with PVC insulation and PVC sheath Polyvinyl chloride insulated cables of rated voltages up to and including 450/750 V Conductors of insulated cables Rubber insulated cables - Rated voltages up to and including 450/750 V Electric cables - Calculation of the current rating Tests for electric cables under fire conditions - Circuit integrity Tests on electric and optical fibre cables under fire conditions Power cables with extruded insulation and their accessories for rated voltages from 1 kV (Um = 1.2 kV) up to 30 kV (Um = 36 kV) Thermocouples Fire hazard testing Industrial platinum resistance thermometers Tests on gases evolved during combustion of materials from cables Electric and optical fibre cables - Test methods for normetallic materials Calculation of thermally permissible short-circuit currents, taking into account nor-adiabatic heating effects
HD 361 IEC 60079 IEC 60085 IEC 60092 IEC 60189 IEC 60227 IEC 60228 IEC 60245 IEC 60245 IEC 60331 IEC 60332 IEC 60502 IEC 60564 IEC 60751 IEC 60754 IEC 60811	System for cable designation Electrical apparatus for explosive gas atmospheres Electrical insulation - Thermal evaluation and designation Electrical installations in ships Low-frequency cables with PVC insulation and PVC sheath Polyvinyl chloride insulated cables of rated voltages up to and including 450/750 V Conductors of insulated cables Rubber insulated cables Rated voltages up to and including 450/750 V Electric cables - Calculation of the current rating Tests for electric cables under fire conditions Power cables with extruded insulation and their accessories for rated voltages from 1 kV (Um = 1.2 kV) up to 30 kV (Um = 36 kV) Thermocouples Fire hazard testing Industrial platinum resistance thermometers Tests on gases evolved during combustion of materials from cables Electric and optical fibre cables - Test methods for normetallic materials Calculation of thermally permissible short-circuit currents, taking into account non-adiabatic heating effects Measurement of smoke density of cables burning under defined conditions
HD 361 IEC 60079 IEC 60085 IEC 60092 IEC 60189 IEC 60227 IEC 60228 IEC 60245 IEC 60245 IEC 60245 IEC 60331 IEC 60332 IEC 60584 IEC 60584 IEC 60754 IEC 60754 IEC 60754 IEC 60754 IEC 60754 IEC 60754	System for cable designation Electrical apparatus for explosive gas atmospheres Electrical insulation - Thermal evaluation and designation Electrical installations in ships Low-frequency cables with PVC insulation and PVC sheath Polyvinyl chloride insulated cables of rated voltages up to and including 450/750 V Conductors of insulated cables Rubber insulated cables - Rated voltages up to and including 450/750 V Electric cables - Calculation of the current rating Tests for electric cables under fire conditions - Circuit integrity Tests on electric and optical fibre cables under fire conditions Power cables with extruded insulation and their accessories for rated voltages from 1 kV (Um = 1.2 kV) up to 30 kV (Um = 36 kV) Thermocouples Fire hazard testing Industrial platinum resistance thermometers Tests on gases evolved during combustion of materials from cables Electric and optical fibre cables - Test methods for normetallic materials Calculation of thermally permissible short-circuit currents, taking into account nor-adiabatic heating effects
HD 361 IEC 60079 IEC 60085 IEC 60092 IEC 60189 IEC 60227 IEC 60228 IEC 60245 IEC 60245 IEC 60245 IEC 60331 IEC 60332 IEC 60534 IEC 60554 IEC 60751 IEC 60751 IEC 60751 IEC 60741 IEC 60949 IEC 61034 IEC 61034 IEC 61034	System for cable designation Electrical apparatus for explosive gas atmospheres Electrical insulation - Thermal evaluation and designation Electrical insulations in ships Low-frequency cables with PVC insulation and PVC sheath Polyvinyl chloride insulated cables of rated voltages up to and including 450/750 V Conductors of insulated cables Rubber insulated cables - Rated voltages up to and including $450/750$ V Electric cables - Calculation of the current rating Tests for electric cables under fire conditions - Circuit integrity Tests on electric and optical fibre cables under fire conditions Power cables with extruded insulation and their accessories for rated voltages from 1 kV (Um = 1.2 kV) up to 30 kV (Um = 36 kV) Thermocouples Fire hazard testing Industrial platinum resistance thermometers Tests on gases evolved during combustion of materials from cables Electric and optical fibre cables ort-circuit currents, taking into account non-adiabatic heating effects Measurement of smoke density of cables burning under defined conditions Electric cables - Spark-test method
HD 361 IEC 60079 IEC 60085 IEC 60092 IEC 60189 IEC 60227 IEC 60228 IEC 60245 IEC 60245 IEC 60245 IEC 60245 IEC 60331 IEC 60332 IEC 60502 IEC 60564 IEC 60754 IEC 60754 IEC 60754 IEC 60949 IEC 61034 IEC 62230 JIS C 1602 JIS C 1602	System for cable designation Electrical apparatus for explosive gas atmospheres Electrical insulation - Thermal evaluation and designation Electrical insulations in ships Low-frequency cables with PVC insulation and PVC sheath Polyvinyl chloride insulated cables of rated voltages up to and including 450/750 V Conductors of insulated cables Rubber insulated cables - Rated voltages up to and including 450/750 V Electric cables - Calculation of the current rating Tests for electric cables under fire conditions - Circuit integrity Tests on electric and optical fibre cables under fire conditions Power cables with extruded insulation and their accessories for rated voltages from 1 kV (Um = 1.2 kV) up to 30 kV (Um = 36 kV) Thermocouples Fire hazard testing Industrial platinum resistance thermometers Tests on gases evolved during combustion of materials from cables Electric and optical fibre cables - Test methods for normetallic materials Calculation of thermally permissible short-circuit currents, taking into account normadiabatic heating effects Measurement of smoke density of cables burning under defined conditions Electric cables - Spark-test method Thermocouples Compensating lead Wires 59 Military Specification Sheet : Wire, Electric, Fluoropolymer-insulated
HD 361 IEC 60079 IEC 60085 IEC 60092 IEC 60189 IEC 60227 IEC 60228 IEC 60245 IEC 60245 IEC 60245 IEC 60331 IEC 60332 IEC 60502 IEC 60504 IEC 60754 IEC 60754 IEC 60754 IEC 60754 IEC 60754 IEC 60049 IEC 61034 IEC 62230 JIS C 1610 MIL-W-2275 NF C 15-10	System for cable designation Electrical apparatus for explosive gas atmospheres Electrical insulation - Thermal evaluation and designation Electrical insulations in ships Low-frequency cables with PVC insulation and PVC sheath Polyvinyl chloride insulated cables of rated voltages up to and including 450/750 V Conductors of insulated cables Rubber insulated cables - Rated voltages up to and including 450/750 V Electric cables - Calculation of the current rating Tests for electric cables under fire conditions - Circuit integrity Tests on electric and optical fibre cables under fire conditions Power cables with extruded insulation and their accessories for rated voltages from 1 kV (Um = 1.2 kV) up to 30 kV (Um = 36 kV) Thermocouples Fire hazard testing Industrial platinum resistance thermometers Tests on gases evolved during combustion of materials from cables Electric and optical fibre cables - Test methods for nor-metallic materials Calculation of thermally permissible short-circuit currents, taking into account non-adiabatic heating effects Measurement of smoke density of cables burning under defined conditions Electric cables - Spark-test method Thermocouples Compensating lead Wires 59 Military Specification Sheet : Wire, Electric, Fluoropolymerinsulated Low voltage electrical installations
HD 361 IEC 60079 IEC 60085 IEC 60092 IEC 60189 IEC 60227 IEC 60228 IEC 60245 IEC 60245 IEC 60245 IEC 60245 IEC 60331 IEC 60332 IEC 60502 IEC 60564 IEC 60754 IEC 60754 IEC 60754 IEC 60949 IEC 61034 IEC 62230 JIS C 1602 JIS C 1602	System for cable designation Electrical apparatus for explosive gas atmospheres Electrical insulation - Thermal evaluation and designation Electrical installations in ships Low-frequency cables with PVC insulation and PVC sheath Polyvinyl chloride insulated cables of rated voltages up to and including 450/750 V Conductors of insulated cables Rubber insulated cables - Rated voltages up to and including 450/750 V Electric cables - Calculation of the current rating Tests for electric cables under fire conditions - Circuit integrity Tests on electric and optical fibre cables under fire conditions Power cables with extruded insulation and their accessories for rated voltages from 1 kV (Um = 1.2 kV) up to 30 kV (Um = 36 kV) Thermocouples Fire hazard testing Industrial platinum resistance thermometers Tests on gases evolved during combustion of materials from cables Electric and optical fibre cables - Test methods for non-metallic materials Calculation of thermally permissible short-circuit currents, taking into account non-adiabatic heating effects Measurement of smoke density of cables burning under defined conditions Electric cables - Spark-test method Thermocouples Compensating lead Wires 59 Military Specification Sheet : Wire, Electric, Fluoropolymerinsulated Low voltage electrical installations 3 Basic environmental testing procedures - Test methods.
HD 361 IEC 60079 IEC 60085 IEC 60092 IEC 60189 IEC 60227 IEC 60228 IEC 60245 IEC 60245 IEC 60245 IEC 60245 IEC 60331 IEC 60332 IEC 60534 IEC 60554 IEC 60754 IEC 600754 IEC 60	System for cable designation Electrical apparatus for explosive gas atmospheres Electrical insulation - Thermal evaluation and designation Electrical insulations in ships Low-frequency cables with PVC insulation and PVC sheath Polyvinyl chloride insulated cables of rated voltages up to and including 450/750 V Conductors of insulated cables Rubber insulated cables - Rated voltages up to and including 450/750 V Electric cables - Calculation of the current rating Tests for electric cables under fire conditions Power cables with extruded insulation and their accessories for rated voltages from 1 kV (Um = 1.2 kV) up to 30 kV (Um = 36 kV) Thermocouples Fire hazard testing Industrial platinum resistance thermometers Tests on gases evolved during combustion of materials from cables Electric cables - Spark-test methods for non-metallic materials Calculation of thermally permissible short-circuit currents, taking into account nomadiabatic heating effects Measurement of smake density of cables burning under defined conditions Electric cables Spark-test method Thermocouples Compensating lead Wires Compensating lead Wires Military Specification Sheet : Wire, Electric, Fluoropolymerinsulated
HD 361 IEC 60079 IEC 60085 IEC 60092 IEC 60189 IEC 60227 IEC 60228 IEC 60245 IEC 60245 IEC 60245 IEC 60331 IEC 60332 IEC 60502 IEC 60504 IEC 60754 IEC 60754 IEC 60754 IEC 60754 IEC 60754 IEC 60049 IEC 61034 IEC 62230 JIS C 1610 MIL-W-2275 NF C 15-10	System for cable designation Electrical apparatus for explosive gas atmospheres Electrical insulation - Thermal evaluation and designation Electrical insulations in ships Low-frequency cables with PVC insulation and PVC sheath Polyvinyl chloride insulated cables of rated voltages up to and including 450/750 V Conductors of insulated cables Rubber insulated cables - Rated voltages up to and including 450/750 V Electric cables - Calculation of the current rating Tests for electric cables under fire conditions Power cables with extruded insulation and their accessories for rated voltages from 1 kV (Um = 1.2 kV) up to 30 kV (Um = 36 kV) Thermocouples Fire hazard testing Industrial platinum resistance thermometers Tests on gases evolved during combustion of materials from cables Electric cables - Spark-test methods for normetallic materials Calculation of thermally permissible short-circuit currents, taking into account normadiabatic heating effects Measurement of smake density of cables burning under defined conditions Electric cables Electric cables Sompassing lead Wires Sompassing lead Wires Sompassing lead Wires Sompassing lead Wires

NF C 32-018 Conductors of small wires and cables

www.omerin.com

NF C 31-111 CR1 test	conductors in bare or tinned, cold-hardened or annealed copper, of circular cross-section obtained by single-filament or multi-filament drawing Tests for classification of conductors and cables with respect to their fire
	behaviour
NF C 42-323	Electric measurement devices - identification of thermocouples
NF C 42-324	Extension and compensation cables for thermocouples
	Composition, nature of materials, manufacturing tests
NF C 93-521	Electronic components: Low frequency equipment wires and cables with solid or
	stranded conductors, PVC insulation and sheath.
NF C 93-523	Electronic components: Insulated wires for high temperatures
NF C 93-524 NF EN 13601	Electronic components: Insulated wires for high temperatures up to 150 °C
NF EN 13001	Copper and copper alloys - Copper rod, bar and wire for general electrical purposes
NF EN 13602	Copper and copper alloys - Drawn, round copper wire for the manufacture of electrical conductors
NF EN 13603	Copper and copper alloys - Test methods for assessing protective tin coatings
	on drawn round copper wire for electrical purposes
NF EN 50143	Cables for illuminated signs and illuminated discharge tubes
NF EN 50200	Method of test for resistance to fire of unprotected small cables for use in
	emergency circuits
NF EN 50264	Railway applications - Railway rolling stock power and control cables having special fire performance
NF EN 50305	Railway applications - Railway rolling stock cables having special fire
	performance - Test methods
NF EN 50306	Railway applications - Railway rolling stock cables having special fire performance - Thin wall
NF EN 50343	Railway applications - Rolling stock - Rules for installation of cabling
NF EN 50362	Method of test for resistance to fire of larger unprotected power and control
	cables for use in emergency circuits
NF EN 50363	Insulating, sheathing and covering materials for low-voltage energy cables
NF EN 50382	Railway applications - Railway rolling stock high temperature power cables
	having special fire performance
NF EN 50395	Electrical test methods for low voltage energy cables
NF EN 50396	Non-electrical test methods for low voltage energy cables
NF EN 50525	Electric cables - low voltage energy cables of rated voltages up to and including $450/750 \text{ V} (UO/U)$
NF EN 60228	Conductors of insulated cables
NF EN 60335	Household and similar electrical appliances - Safety
NF EN 60584	Thermocouples
NF EN 60598	Luminaires
NF EN 60754	Tests on gases evolved during combustion of materials from cables
NF EN 61034	Measurement of smoke density of cables burning under defined conditions
NF EN 62230	Electric cables - Spark-test method
NF F 16-101	Rolling stock. Fire behaviour. Materials selection
NF C 87-201	Oil industry - Extension and compensation cables for thermocouples - Specifications
NF C 87-202	Oil industry - Instrumentation cables - Specifications
NF X 10-702	Fire test methods. Determination of the opacity of the fumes in an atmosphere without air renewal
NF X 70-100	Fire tests - Analysis of gaseous effluents
NF X 70-101	Fire tests - Analysis of gaseous effluents
UL 94	Tests for Flammability of Plastic Materials for Parts in Devices and Appliances
UL 758	Appliance Wiring Material
UL 1441	Coated Electrical Sleeving
UL 1581	Reference Standard for Electrical Wires, Cables, and Flexible Cords
UTE C 93-521	Electronic components. Low frequency equipment wires and cables with solid or stranded conductors, PVC insulation and sheath
UTE C 93-523	Electronic components. Insulated wires for high temperatures
UTE C 93-524	Electronic components. Insulated wires for high temperatures up to 150 °C
VDE 0207	Insulating and sheathing compounds for cables and flexible cords
VDE 0250	Cables, wires and flexible cords for power installations
VDE 0472	Testing of cables, wires and flexible cords

Names and symbols As per NF X 02-004

In this paragraph, we provide examples of usual physical quantities with the corresponding units and symbols, along with the expression of derived units in base units and supplementary units.

Physical quantities and base units of the International system of units

PHYSICAL QUANTITY	UNIT	SYMBOL
length	metre	m
mass	kilogram	kg
time	second	S
electrical current strength	ampere	A
thermodynamic temperature	Kelvin	К
quantity of material	mole	mol
light intensity	candela	cd

Note: The temperature in Celsius t is associated to the thermodynamic temperature T via the relationship t = T-273.15

A temperature interval may be expressed either in Kelvins or in degrees Celsius. In this case, 1 °C = 1 K

> Supplementary physical quantities and units of the international system (which may be used as quantities and base units)

PHYSICAL QUANTITY	UNIT	SYMBOL
plane angle	radian	rad
solid angle	steradian	sr

Table presenting the main multiples and sub-multiples of units of measurement

	MULTIPLES	
Factor	Prefix	Symbol
1018	exa	E
1015	peta	Р
1012	tera	Т
109	giga	G
106	mega	Μ
103	kilo	k
102	hecto	h
10 ¹	deca	da
	SUB-MULTIPLES	
10-1	deci	d
10-2	centi	с
10-3	milli	m
10 ⁻⁶	micro	μ
10-9	nano	n
10-12	pico	р
10-15	femto	f
10-18	atto	a

Some quantities and derived units of the International system of units:

OTHER OTHER STMBOL BASE UNITS surface area volume square mete m ² m ² m ² argular speed redun per second m/s ms ² ms ² acceleration mete per squared second m/s ms ² ms ² frequency hetrz Hz s ¹ s ¹ density kilogram per second kg/s kg.s ³ quantity of movement kilogram per second kg/s kg.s ³ quantity of movement kilogram per second kg/s kg.m ³ moment of inertia kilogram metre squared per second kg.m ² /s kg.m ² moment of force Newton N kg.m ² /s mg ² /s power, word, power, word, power, word, energy, two, thered word W kg.m ² /s mg ² /s timeral conductivity square metre per second m/s/s ms ² /s ms ² /s surface tension nergy, two, surface tension N kg.m ² /s ms ² /s moment of inertia kilogram metre per second ms ² /s		PHYSICAL	UNIT		IN
Volume cubic metre m³ m³ angular speed radion per second m/s rad.s1 speed metre per second m/s m.s1 acceleration metre per second m/s m.s1 frequency hentz Hz s1 frequency of rotation second to the power minus 1 s1 s1 quantity of movement kilogram per second kg/s kg.m3 quantity of movement kilogrammetre squared kg.m2/s kg.m2.s1 moment of inertia kilogrammetre squared kg.m2/s kg.m2.s1 moment of force Newton N kg.m2.s2 off orce Newton N kg.m2.s2 off orce Newton per metre N/m kg.m2.s2				SYMBOL	BASE
angular speed speed radius per second metre per second metre per second metre per second metre per second metre per second minus 1 radius mus 1 frequency hertz Hz s-1 frequency hertz Hz s-1 density kilogram per cubic metre minus 1 kg/m kg,m3 density kilogram per second mass flow kg/m3 kg,m3 quantity of movement kilogrammetre second second m3/s m3/s1 quantity of movement kilogrammetre squared per second kg,m2/s kg,m2/s moment of inertia kilogrammetre squared force Newton N kg,m2/s kg,m2/s1 moment of force Newton per metre N.m kg,m2/s2 pressure, stress Pascal Pa kg,m1/s1 surface tension Newton per metre N/m kg.m2/s2 m2/s1 m2/s1 m2/s1 surface tension Newton per metre N/m kg.m2/s1 m2/s1 m2/s1 surface tension Newton per metre M/m kg.m2/s1/s2 m2/s1 power, eenergy, flow watt per metre/ke					
frequency of rotation second to the power mins 1 s-1 s-1 density kilogram per cubic metre volume flow kubic metre per second kg/m3 kg.m3 quantity of movement kilogrammetre second m3/s kg.m2,s1 interior kilogrammetre squared per second kg.m2,s1 kg.m2,s1 moment of inertia kilogrammetre squared per second kg.m2,s2 kg.m2,s1 moment of force Newton N kg.m2,s2 pressure, stress Pascal Pa kg.m1,s2 dynamic viscosity square metre per second m2/s m2,s1 surface tension Newton per metre N/m kg.m2,s2 energy, work, heat joule J kg.m2,s2 energy, flow watt W kg.m2,s3 free energy, flow watt W/m kg.m2,s2 energy, flow watt W kg.m2,s2 energy, flow watt W/m kg.m2,s2 intera dilation coefficient Kelvin to the power minus 1 K-1 K-1 <	3				
frequency of rotation second to the power mins 1 s-1 s-1 density kilogram per cubic metre volume flow kubic metre per second kg/m3 kg.m3 quantity of movement kilogrammetre second m3/s kg.m2,s1 interior kilogrammetre squared per second kg.m2,s1 kg.m2,s1 moment of inertia kilogrammetre squared per second kg.m2,s2 kg.m2,s1 moment of force Newton N kg.m2,s2 pressure, stress Pascal Pa kg.m1,s2 dynamic viscosity square metre per second m2/s m2,s1 surface tension Newton per metre N/m kg.m2,s2 energy, work, heat joule J kg.m2,s2 energy, flow watt W kg.m2,s3 free energy, flow watt W/m kg.m2,s2 energy, flow watt W kg.m2,s2 energy, flow watt W/m kg.m2,s2 intera dilation coefficient Kelvin to the power minus 1 K-1 K-1 <	1 A				
frequency of rotation second to the power minus 1 s-1 s-1 density kilogram per cubic metre volume flow kubic metre per second kg/m3 kg.m3 quantity of movement kilogrammetre per second kg.m2 kg.m2.s-1 indext to move ment kilogrammetre squared per second kg.m2/s kg.m2.s-1 moment of inertia kilogrammetre squared per second kg.m2/s kg.m2.s-1 moment of inertia kilogrammetre squared per second kg.m2/s kg.m2.s-1 moment of force Newton N kg.m2.s-1 pressure, stress Pascal Pa kg.m1.s-2 dynamic viscosity square metre per second Pa/s kg.m1.s-2 surface tension Newton per metre N/m kg.s-2 energy, work, heat joule J kg.m2.s-3 free energy, flow watt W kg.m2.s-3 inear dilation coefficient Kelvin to the power minus 1 K-1 K-1 free energy, flow watt W kg.m2.s-2 ilmental energy, enthology free ene					
frequency of rotation second to the power minus 1 s-1 s-1 density kilogram per cubic metre volume flow kubic metre per second kg/m3 kg.m3 quantity of movement kilogrammetre per second kg.m2 kg.m2.s-1 indext to move ment kilogrammetre squared per second kg.m2/s kg.m2.s-1 moment of inertia kilogrammetre squared per second kg.m2/s kg.m2.s-1 moment of inertia kilogrammetre squared per second kg.m2/s kg.m2.s-1 moment of force Newton N kg.m2.s-1 pressure, stress Pascal Pa kg.m1.s-2 dynamic viscosity square metre per second Pa/s kg.m1.s-2 surface tension Newton per metre N/m kg.s-2 energy, work, heat joule J kg.m2.s-3 free energy, flow watt W kg.m2.s-3 inear dilation coefficient Kelvin to the power minus 1 K-1 K-1 free energy, flow watt W kg.m2.s-2 ilmental energy, enthology free ene	AC				
Toruganity kinggram per cubic metre wolume flow kinggram per cubic metre cubic metre per second kg/m³ kg.m³ quantity of movement kilogram per second kg/m² kg.m².s³ quantity of movement kilogrammetre squared per second kg.m²/s kg.m².s³ moment of inertia kilogrammetre squared per second kg.m²/s kg.m².s² moment of force Newton-metre N.m kg.m².s² pressure, stress Pascal Pa kg.m³.s¹ surface tension Newton-metre N/m kg.s² surface tension Newton per metre N/m kg.s² surface tension Newton per metre N/m kg.s² energy, work, heat joule J kg.m².s² power, energy flow watt W kg.m².s² itera elicition coefficient Kelvin to the power minus 1 K¹ K¹ filed entropy interori entropy interori entropy interori entropy joule per kelvin J/K kg.m².s² uminous extince lumen Im cd.sr. cd.sr. <	S.	irequency		T IZ	5"1
Motion Field Kilogram per second kg/s kg.s-1 quantity of movement kilogrammetre per second kg.m/s kg.m.s-1 kinetic moment kilogrammetre squared per second kg.m2/s kg.m2/s moment of inertia kilogrammetre squared per second kg.m2/s kg.m2 moment of inertia kilogrammetre squared kg.m2 kg.m2 force Newton N kg.m2 moment of inertia kilogrammetre squared kg.m2 kg.m2 moment of inertia kilogrammetre squared kg.m2 kg.m2.s2 moment of inertia kilogrammetre squared kg.m2 kg.m2.s2 moment of inertia kilogrammetre squared Pa kg.m2.s2 moment of inertia Newton metre N.m. kg.m2.s2 entropy square metre per second Pa.s kg.m2.s2 surface tension Newton per metre N/m kg.m2.s2 power, watt W kg.m2.s2 m2/s internal conductivity watt per metre Relvin V/m.K1.s3		frequency of rotation	minus 1		s-1
Volume flow cubic metre per second m³/s m³/s.s1 quantity of movement kilogrammetre per second kg.m/s kg.m/s kg.m2.s1 kinetic moment kilogrammetre squared per second kg.m2/s kg.m2.s1 kg.m2 moment of inertia kilogrammetre squared kg.m2 kg.m2 kg.m2.s2 force Newton N kg.m2.s2 kg.m2.s2 pressure, stress Pascal Pa kg.m1.s2 dynamic viscosity square metre per second Pa.s. kg.m1.s2 isurface tension Newton per metre N/m kg.s2 energy, work, heat joule J kg.m2.s3 linear dilation coefficient Kelvin to the power minus 1 K-1 K-1 fort capacity joule per kilogram-Kelvin J/(kg.K) m2.K-1.s2 entropy joule per kilogram-Kelvin J/(kg.K) m2.K-1.s2 ilight flow lumen per vabit Im/m2 cd.sr.m2 light flow lumen per vabit Im/m2 cd.sr.m2 uninous exposure <td></td> <td></td> <td></td> <td>kg/m³</td> <td></td>				kg/m³	
YUTTURE quantity of movement kilogrammetre per second kg.m/s kg.m./s kg.m./s kinetic moment kilogrammetre squared per second kg.m²/s kg.m²/s kg.m²/s moment of inertia kilogrammetre squared per second N kg.m²/s kg.m²/s moment of inertia kilogrammetre squared kg.m²/s kg.m²/s kg.m²/s moment of inertia Newton metre N.m kg.m²/s m²/s pressure, stress Pascal Pa kg.m²/s m²/s surface tension Newton per metre N/m kg.m²/s² surface tension Newton per metre N/m kg.m²/s² power, energy, work, heat joule J kg.m²/s² power, energy, flow watt W kg.m²/s² linear dilation coefficient Kelvin to the power minus 1 K¹ K¹ free energy, flow watt W kg.m²/s² kg.m²/s² internal energy, work, heat joule per kelvin J/K kg.m²/s² kg.m²/s² free energy, flow				kg/s	kg.s-1
Villgrammetre squared per second kg.m²/s kg.m²/s kg.m²/s moment of inertia kilogrammetre squared kg.m² kg.m² kg.m²/s moment of inertia kilogrammetre squared kg.m² kg.m² kg.m²/s moment of inertia kilogrammetre squared kg.m² kg.m² kg.m²/s moment of force Newton N kg.m²/s kg.m²/s pressure, stress Pacal Pa kg.m²/s m²/s surface tension Newton per metre N/m kg.s² m²/s surface tension Newton per metre N/m kg.s² m²/s power, energy flow watt W kg.m².s² inear dilation coefficient Kelvin to the power minus 1 K¹ K¹ fer energy, free entropy joule per kilogram-Kelvin J/K kg.m².s² internal energy, entholpy joule per kilogram-Kelvin J/K kg.m².s² uninous exitance lumen Im cd.sr.m² luminous exitance lumen per cubic metre Im/m² cd			cubic metre per second		
Number second Kg.m²/s Kg.m²/s Kg.m²/s moment of inertia kilogrammetre squared kg.m² kg.m² kg.m² force Newton N kg.m² kg.m² kg.m² moment of force Newton N kg.m² kg.m² kg.m² pressure, stress Pascal-second Pa kg.m².s² m².s³ dynamic viscosity square metre per second m²/s m².s³ m².s³ sufface tension Newton per metre N/m kg.m².s² m².s³ power, heat joule J kg.m².s² m².s³ power, heat joule J kg.m².s² m².s² power, heat joule per kilogram-Kelvin J/K kg.m.K³.s² inear dilation coefficient Kelvin to the power minus 1 K¹ K³ Thermal conductivity watt per metre-Kelvin J/K kg.m.K³.s² inear dilation coefficient Kelvin to the power minus 1 K¹ K³ inearergy, free energy, tree entropy joule per kelvi		quantity of movement	kilogram-metre per second	kg.m/s	kg.m.s-1
View kilogrammetre squared kg.m² kg.m² force Newton N kg.m.s² moment of force Newtonmetre N.m kg.m.².s² moment of force Newtonmetre N.m kg.m.².s² pressue, stress Pascal Pa kg.m.².s³ dynamic viscosity square metre per second Pa.s kg.m.².s³ surface tension Newton per metre N/m kg.s² energy, work, heat joule J kg.m².s² power, energy flow watt W kg.m².s² inear dilation coefficient Kelvin to the power minus 1 K-1 K-1 Thermal conductivity watt per metre-Kelvin W/(m.K) kg.m².s² inear dilation coefficient Kelvin to the power minus 1 K-1 K-1 tentopy joule per kilogram-Kelvin J/K kg.m².s² m².s² inentral energy, entholpy joule per kelvin J/K kg.m².s² ilight flow lumen metre Im/m² cd.sm² luminous exposure <		kinetic moment		kg.m²/s	kg.m².s-1
Construct function Factor for the procession Factor f	5	moment of inertia		ka.m ²	ka.m ²
Instrume incosing reaction reaction <threaction< th=""> reaction reaction<td>Ż</td><td></td><td>0 1</td><td></td><td></td></threaction<>	Ż		0 1		
Construct function Factor for the procession Factor f	HA				
Construct function Factor for the procession Factor f	2				kg.m-1.s-2
Surface tension Newton per metre heat N/m kg.s ⁻² power, energy flow watt W kg.m ² .s ⁻³ linear dilation coefficient Kelvin to the power minus 1 K ⁻¹ K ⁻¹ Thermal conductivity watt per metre-Kelvin W/(m,K) kg.m ² .s ⁻³ inear dilation coefficient Kelvin to the power minus 1 K ⁻¹ K ⁻¹ Thermal conductivity watt per metre-Kelvin W/(m,K) kg.m ² .s ⁻³ internal energy, enhalpy free energy, free enhalpy free energy, free enhalpy joule per Kelvin J/K kg.m ² .s ⁻² Iluminous luminescence candela per cubic metre cd/m ² cd.sr.m ² Iluminous luminescence candela per cubic metre cd/m ² cd.sr.m ² Iluminous luminescence coulomb C A.s electrical charge, electrical field volt per metre V/m m.kg.A ⁻¹ .s ⁻³ uminous efficiency lumen per watt Im/W cd.sr.m ² uminous efficience, voltage, electrical field volt per metre V/m m.kg.A ⁻¹ .s ⁻³ magnetic induction flow Weber <td>×</td> <td>dynamic viscosity</td> <td></td> <td></td> <td></td>	×	dynamic viscosity			
energy, work, heat joule J kg.m².s² power, energy flow watt W kg.m².s² linear dilation coefficient Kelvin to the power minus 1 K-1 K-1 Thermal conductivity watt per metre-Kelvin W/(m.K) kg.m.K-1.s² heat capacity joule per kilogram-Kelvin J/(kg.K) m².K-1.s² entropy joule per kelvin J/K kg.m².k-3.s² internal energy, entholpy joule per kelvin J/K kg.m².k-3.s² internal energy, entholpy joule per kelvin J/K kg.m².s² internal energy, entholpy joule J kg.m².s² iluminous luminescence candela per cubic metre cd/m² cd.m² iluminous extinace lumen per cubic metre lm/m² cd.sr.m² iluminous exposure luxsecond k.s cd.sr.s³ iluminous exposure luxsecond k.s cd.sr.s³ iluminous efficiency lumen per watt lm/W cd.sr.s³ iluminous efficience, oulomb C A.s magnetic in		/			
Theat police J kg.m ² .s ⁻³ power, energy flow watt W kg.m ² .s ⁻³ linear dilation coefficient Kelvin to the power minus 1 K-1 K-1 Thermal conductivity watt per metre-Kelvin W/(m.K) kg.m.K-1.s ⁻³ Specific heat capacity joule per kilogram-Kelvin J/(kg.K) m ² .K ⁻¹ .s ⁻² internal energy, enhalpy free energy, free enhalpy joule J kg.m ² .s ⁻² light flow lumen Im cd.sr.m ² luminous luminescence candela per cubic metre cd/m ² cd.m ² luminous exitance lumen per cubic metre Im/m ² cd.sr.m ² luminous exitance lumen per cubic metre Im/m ² cd.sr.m ² luminous exitance lumen per watt Im/W cd.sr.s ⁻³ .s ⁻³ uminous exitance lumen per watt Im/W cd.sr.s ⁻³ .s ⁻³ uminous exitance lumen per watt Im/W cd.sr.s ⁻³ .s ⁻³ uminous exitance uner per metre V/m m.kg.A ¹ .s ⁻³ voltage, electronotive forcc			Newton per metre	N/m	kg.s-2
energy flow walt VV kg.m2.s3 linear dilation coefficient Kelvin to the power minus 1 K-1 K-1 Thermal conductivity watt per metre-Kelvin W/(m.K) kg.m.K-1.s-3 heat capacity joule per kilogram-Kelvin J/(kg.K) m2.K-1.s-2 internal energy, entholpy free energy, free entholpy joule per Kelvin J/K kg.m2.K-1.s-2 light flow lumen Im cd.sr luminous luminescence candela per cubic metre cd/m2 cd.m-2 luminous settance lumen per cubic metre Im/M2 cd.sr.m-2 luminous settance lumen per cubic metre lm/M2 cd.sr.m-2 luminous exposure luxsecond k.s cd.sr.m-2 luminous exposure luxsecond k.s cd.sr.s.3 optential difference, optential difference, rogacity farad F A2.s4.kg1.m2 magnetic field ampere per metre A/m A.m-1 s-3 magnetic induction flow Weber Wb kg.m2.A2.s3 m2.s2.s2.kg1.m-2 re		heat	joule	J	kg.m ² .s ⁻²
Thermal conductivity watt per metre-Kelvin W/(m. K) kg.m.K-1.s-3 Specific heat capacity joule per kilogram-Kelvin J/(kg. K) m2,K-1.s-2 internal energy, enthalpy free energy, free enthalpy joule per Kelvin J/K kg.m2,K-1.s-2 light flow lumen Im cd.sr luminous luminescence candela per cubic metre cd/m2 cd.m-2 luminous exposure lumen per cubic metre Im/m2 cd.sr.m-2 luminous exposure lumen per cubic metre Im/W cd.sr.m-2 luminous exposure lumen per cubic metre M/W cd.sr.m-2 luminous exposure lumen per watt Im/W cd.sr.m-2 luminous exposure lumen per watt Im/W cd.sr.s.m-2 luminous efficiency lumen per watt Im/W cd.sr.s.3.kg-1.m-2 electrical field volt per metre V/m m.kg.A-1.s-3 potential difference, voltage, electromotive force volt V kg.m2.A-1.s-2 magnetic induction Tesla T kg.m2.A-3.s-2 reluctance <			watt	W	kg.m².s-3
Internal energy, enhalpy free energy, free enhalpy joule J kg.m².s² Iight flow lumen Im cd.sr Iight flow lumen Im cd.sr Iuminous luminescence candela per cubic metre cd/m² cd.m² Iuminous exitance lumen per cubic metre Im/m² cd.sr.m² Iuminous exitance lumen per cubic metre Im/m² cd.sr.m² Iuminous exposure luxsecond k.s cd.sr.m² Iuminous exposure luxsecond k.s cd.sr.m² Iuminous exposure luxsecond k.s cd.sr.s³.kg¹.m² electrical charge, quantity of electricity coulomb C A.s potential difference, voltage, electromotive force volt V kg.m².A¹.s³ magnetic field ampere per metre A/m A.m³ magnetic induction flow Weber Wb kg.m².A³.s² resistance, impedance, resistance, impedance, susceptance ohm Ω kg.m².A².s³ conductivity siemens S A².s³.kg¹.m²		linear dilation coefficient	Kelvin to the power minus 1	K-1	K-1
Internal energy, enhalpy free energy, free enhalpy joule J kg.m².s² Iight flow lumen Im cd.sr Iight flow lumen Im cd.sr Iuminous luminescence candela per cubic metre cd/m² cd.m² Iuminous exitance lumen per cubic metre Im/m² cd.sr.m² Iuminous exitance lumen per cubic metre Im/m² cd.sr.m² Iuminous exposure luxsecond k.s cd.sr.m² Iuminous exposure luxsecond k.s cd.sr.m² Iuminous exposure luxsecond k.s cd.sr.s³.kg¹.m² electrical charge, quantity of electricity coulomb C A.s potential difference, voltage, electromotive force volt V kg.m².A¹.s³ magnetic field ampere per metre A/m A.m³ magnetic induction flow Weber Wb kg.m².A³.s² resistance, impedance, resistance, impedance, susceptance ohm Ω kg.m².A².s³ conductivity siemens S A².s³.kg¹.m²	0 V		watt per metre-Kelvin	W/(m.K)	kg.m.K-1.s-3
Internal energy, enhalpy free energy, free enhalpy joule J kg.m².s² Iight flow lumen Im cd.sr Iight flow lumen Im cd.sr Iuminous luminescence candela per cubic metre cd/m² cd.m² Iuminous exitance lumen per cubic metre Im/m² cd.sr.m² Iuminous exitance lumen per cubic metre Im/m² cd.sr.m² Iuminous exposure luxsecond k.s cd.sr.m² Iuminous exposure luxsecond k.s cd.sr.m² Iuminous exposure luxsecond k.s cd.sr.s³.kg¹.m² electrical charge, quantity of electricity coulomb C A.s potential difference, voltage, electromotive force volt V kg.m².A¹.s³ magnetic field ampere per metre A/m A.m³ magnetic induction flow Weber Wb kg.m².A³.s² resistance, impedance, resistance, impedance, susceptance ohm Ω kg.m².A².s³ conductivity siemens S A².s³.kg¹.m²	NAN		joule per kilogram-Kelvin	J/(kg.K)	
The energy, free enhalpy (Joine) J (g,m ² , 3 ²) light flow lumen Im cd.sr luminous luminescence candela per cubic metre cd/m ² cd.m ² luminous luminescence lumen per cubic metre Im/m ² cd.sr.m ² luminous sexitance lumen per cubic metre Im/m ² cd.sr.m ² luminous sexitance lumen per watt Im/W cd.sr.m ² luminous seposure luxsecond k.s cd.sr.m ² uminous seposure luxsecond k.s cd.sr.m ² electrical charge, quantity of electricity coulomb C A.s electrical field volt per metre V/m m.kg.A ¹ .s ³ potential difference, capacity farad F A ² .s4.kg ¹ .m ⁻² magnetic induction T kg.m ² .A ³ .s ² magnetic induction magnetic induction T kg.m ² .A ² .s ² reluctance resistance, impedance, reactance ohm Ω kg.m ² .A ² .s ² .s ³ conductivity siemens S <	포ਠ		joule per Kelvin	J/K	kg.m ² .K ⁻¹ .s ⁻²
Ight flow lumen Im cd.sr Iuminous luminescence candela per cubic metre cd/m2 cd.m2 Iuminous luminescence lumen per cubic metre Im/m2 cd.sr.m2 Iuminous exitance lumen per cubic metre Im/m2 cd.sr.m2 Iuminous exitance lumen per watt Im/W cd.sr.s3.kg ⁻¹ .m ⁻² Iuminous efficiency lumen per watt Im/W cd.sr.s3.kg ⁻¹ .m ⁻² electrical charge, quantity of electricity coulomb C A.s potential difference, voltage, electronotive force volt V kg.m ² .A ⁻¹ .s ⁻³ magnetic induction Tesla T kg.A ⁻¹ .s ⁻² magnetic induction flow Weber Wb kg.m ² .A ⁻¹ .s ⁻² reluctance Henry H kg.m ² .A ² .s ⁻² reluctance Henry to the power minus 1 H-1 A ² .s ² .kg ⁻¹ .m ⁻² resistance, impedance, reactance ohm Ω kg.m ² .A ² .s ⁻² .s ⁻³ conductivity siemens S A ² .s ³ .kg ⁻¹ .m ⁻² conductivity siemens per			joule	J	kg.m ² .s ⁻²
Iuminous exposure Iuxsecond k.s cd.sr.sm ² Iuminous efficiency Iumen per watt Im/W cd.sr.s3.kg ⁻¹ .m ⁻² Iuminous efficiency Iumen per watt Im/W cd.sr.s3.kg ⁻¹ .m ⁻² quantity of electricity coulomb C A.s potential difference, volt per metre V/m m.kg.A ⁻¹ .s ⁻³ voltage, electronotive force volt V kg.m ² .A ⁻¹ .s ⁻³ magnetic field ampere per metre A/m A.m ⁻¹ magnetic induction Tesla T kg.A ⁻¹ .s ⁻² inductance, permeance Henry H kg.m ² .A ⁻² .s ⁻² resistance, impedance, ohm Ω kg.m ² .A ² .s ⁻² .s ⁻³ conductance, admittance, siemens S A ² .s ³ .kg ⁻¹ .m ⁻² susceptance ohm Ω kg.m ² .A ² .s ⁻² .s ⁻³ conductivity siemens per metre S/m A ² .s ³ .kg ⁻¹ .m ⁻² resistivity ohm-metre Ω.m kg.m ³ .A ² .s ⁻³ conductivity siemens per metre S/m A ²	1	light flow			
Iuminous exposure Iuxsecond k.s cd.sr.sm ² Iuminous efficiency Iumen per watt Im/W cd.sr.s3.kg ⁻¹ .m ⁻² Iuminous efficiency Iumen per watt Im/W cd.sr.s3.kg ⁻¹ .m ⁻² quantity of electricity coulomb C A.s potential difference, volt per metre V/m m.kg.A ⁻¹ .s ⁻³ voltage, electronotive force volt V kg.m ² .A ⁻¹ .s ⁻³ magnetic field ampere per metre A/m A.m ⁻¹ magnetic induction Tesla T kg.A ⁻¹ .s ⁻² inductance, permeance Henry H kg.m ² .A ⁻² .s ⁻² resistance, impedance, ohm Ω kg.m ² .A ² .s ⁻² .s ⁻³ conductance, admittance, siemens S A ² .s ³ .kg ⁻¹ .m ⁻² susceptance ohm Ω kg.m ² .A ² .s ⁻² .s ⁻³ conductivity siemens per metre S/m A ² .s ³ .kg ⁻¹ .m ⁻² resistivity ohm-metre Ω.m kg.m ³ .A ² .s ⁻³ conductivity siemens per metre S/m A ²	5				
Iuminous exposure Iuxsecond k.s cd.sr.sm ² Iuminous efficiency Iumen per watt Im/W cd.sr.s3.kg ⁻¹ .m ⁻² Iuminous efficiency Iumen per watt Im/W cd.sr.s3.kg ⁻¹ .m ⁻² quantity of electricity coulomb C A.s potential difference, volt per metre V/m m.kg.A ⁻¹ .s ⁻³ voltage, electronotive force volt V kg.m ² .A ⁻¹ .s ⁻³ magnetic field ampere per metre A/m A.m ⁻¹ magnetic induction Tesla T kg.A ⁻¹ .s ⁻² inductance, permeance Henry H kg.m ² .A ⁻² .s ⁻² resistance, impedance, ohm Ω kg.m ² .A ² .s ⁻² .s ⁻³ conductance, admittance, siemens S A ² .s ³ .kg ⁻¹ .m ⁻² susceptance ohm Ω kg.m ² .A ² .s ⁻² .s ⁻³ conductivity siemens per metre S/m A ² .s ³ .kg ⁻¹ .m ⁻² resistivity ohm-metre Ω.m kg.m ³ .A ² .s ⁻³ conductivity siemens per metre S/m A ²	Ē				
Iuminous efficiency Iumen per watt Im/W cd.sr.s3.kg ⁻¹ .m ⁻² electrical charge, quantity of electricity coulomb C A.s potential difference, voltage, electrometrice force volt per metre V/m m.kg.A ⁻¹ .s ⁻³ potential difference, voltage, electrometrice force volt V kg.m ² .A ⁻¹ .s ⁻³ magnetic field ampere per metre A/m A.m ⁻¹ magnetic induction Tesla T kg.A ⁻¹ .s ⁻² magnetic induction flow Weber Wb kg.m ² .A ⁻¹ .s ⁻² reductance, permeance Henry H kg.m ² .A ⁻² .s ⁻² reluctance Henry to the power minus 1 H ⁻¹ A ² .s ² .kg ⁻¹ .m ⁻² resistance, impedance, susceptance ohm Ω kg.m ² .A ² .s ⁻³ conductivity siemens S A ² .s ³ .kg ⁻¹ .m ⁻² molar mass kilogram per mole Ω.m kg.m ³ .A ² .s ⁻³	Ö				
electrical charge, quantity of electricity coulomb C A.s electrical field potential difference, voltage, electromotive force volt per metre V/m m.kg.A ¹ .s ⁻³ magnetic field magnetic induction magnetic induction inductance, permeance farad F A2;s4,kg ⁻¹ .m ⁻² resistance, impedance, resistance, impedance, susceptance Henry H kg.m ² .A ² .s ⁻² resistivity ohm-metre Ω.m kg.m ² .A ² .s ⁻² resistivity ohm-metre Ω.m kg.m ² .A ² .s ⁻² resistivity ohm-metre Ω.m kg.m ² .A ² .s ⁻² resistivity ohm-metre Ω.m kg.m ² .A ² .s ⁻³ conductivity siemens S A2;s ³ .kg ⁻¹ .m ⁻² resistivity ohm-metre Ω.m kg.m ³ .A ² .s ⁻³ conductivity siemens per metre S/m A2;s ³ .kg ⁻¹ .m ⁻³ molar mass kilogram per mole kg/mol kg.mol-1		luminous exposure			cd.sr.s.m-2
quantity of electricity Countrib C A.s electrical field volt per metre V/m m.kg.A-1.s-3 potential difference, voltage, electromotive force volt V kg.m2.A-1.s-3 magnetic field ampere per metre A/m A.s.m1 magnetic induction Tesla T kg.A-1.s-3 magnetic induction Tesla T kg.A-1.s-2 inductance, permeance Henry H kg.m2.A-1.s-2 relactance Henry to the power minus 1 H-1 A2.s2.kg-1.m-2 resistance, impedance, reactance ohm Ω kg.m2.A-2.s-3 conductance, admittance, susceptance siemens S A2.s3.kg-1.m-2 conductivity siemens per metre Ω.m kg.m3.A-2.s-3 conductivity siemens per metre S/m A2.s3.kg-1.m-3 molor mass klicigram per mole kg/mol kg.mol-1					-
Velt per metre V/m m.kg.A-1,s-3 potential difference, voltage, electronotive force volt V kg.m ² .A-1,s-3 magnetic field ampere per metre A/m A.m ⁻¹ magnetic field ampere per metre A/m A.m ⁻¹ magnetic induction Tesla T kg.M ⁻¹ .s ⁻² magnetic induction flow Weber Wb kg.m ² .A-1,s ⁻² reluctance, permeance Henry H kg.m ² .A-2,s ⁻² reluctance, dimittance, susceptance ohm Ω kg.m ² .A-2,s ⁻³ conductivity siemens S A ² .s ³ .kg ⁻¹ .m ⁻² susceptance siemens S A ² .s ³ .kg ⁻¹ .m ⁻² molar mass kilogram per metre S/m A ² .s ³ .kg ⁻¹ .m ⁻²			coulomb	С	
potential difference, voltage, electromotive force volt V kg.m².A¹.s³ acapacity farad F A2.s4.kg¹.m² magnetic field ampere per metre A/m A.m¹ magnetic induction Tesla T kg.A²1.s² magnetic induction Tesla T kg.m².A².s² inductance, permeance Henry H kg.m².A².s² reluctance Henry to the power minus 1 H¹ A2.s².kg¹.m² resistance, impedance, reactance ohm Ω kg.m².A².s³ conductance, admittance, susceptance siemens S A2.s³.kg-1.m² resistivity ohm-metre Ω.m kg.m³.A².s³ conductivity siemens per metre S/m A2.s³.kg-1.m² molar mas klilogram per mole kg/mol kg.mol-1			volt per metre	V/m	m.kg.A-1.s-3
Voltage, electromotive force G capacity farad F A2.s4.kg ⁻¹ .m ⁻² magnetic field ampere per metre A/m A.m ⁻¹ magnetic induction Tesla T kg.m ² .4 ⁻¹ .s ⁻² inductance, permeance Henry H kg.m ² .A ⁻² .s ⁻² resistance, impedance, reactance Henry to the power minus 1 H ⁻¹ A2.s ² .kg ⁻¹ .m ⁻² conductance, admittance, susceptance S A2.s ³ .kg ⁻¹ .m ⁻² A2.s ³ .kg ⁻¹ .m ⁻² conductance, admittance, susceptance siemens S A2.s ³ .kg ⁻¹ .m ⁻² conductivity ohm-metre Ω.m kg.m ³ .A ⁻² .s ⁻³ conductivity siemens per metre S/m A2.s ³ .kg ⁻¹ .m ⁻³ molar mass klicigram per mole kg/mol kg.mol-1			volt	V	
magnetic field ampere per metre A/m A.m ⁻¹ magnetic induction Tesla T kg.A ⁻¹ .s ⁻² magnetic induction flow Weber Wb kg.m ⁻² .A ⁻¹ .s ⁻² inductance, permeance Henry H kg.m ⁻² .A ⁻² .s ⁻² reluctance Henry to the power minus 1 H ⁻¹ A ² .s ² .kg ⁻¹ .m ⁻² resistance, impedance, reactance ohm Ω kg.m ² .A ⁻² .s ⁻³ conductance, admittance, sciemens S A ² .s ³ .kg ⁻¹ .m ⁻² resistivity ohm-metre Ω.m kg.m ³ .A ² .s ⁻³ conductivity sciemens per metre S/m A ² .s ³ .kg ⁻¹ .m ³ molar mass klilogram per mole kg/mol kg.mol-1					0
resistance, impedance, reactance ohm Ω kg.m ² .A ² .s ⁻³ conductance, admittance, susceptance siemens S A ² .s ⁻³ .kg ⁻¹ .m ² conductivity ohm-metre Ω.m kg.m ³ .A ² .s ⁻³ conductivity siemens per metre S/m A ² .s ⁻³ .kg ⁻¹ .m ² molar mass kilogram per mole kg/mol kg.mol ⁻¹	ΣK				
resistance, impedance, reactance ohm Ω kg.m ² .A ² .s ⁻³ conductance, admittance, susceptance siemens S A ² .s ⁻³ .kg ⁻¹ .m ² conductivity ohm-metre Ω.m kg.m ³ .A ² .s ⁻³ conductivity siemens per metre S/m A ² .s ⁻³ .kg ⁻¹ .m ² molar mass kilogram per mole kg/mol kg.mol ⁻¹	TIS				
resistance, impedance, reactance ohm Ω kg.m ² .A ² .s ⁻³ conductance, admittance, susceptance siemens S A ² .s ⁻³ .kg ⁻¹ .m ² conductivity ohm-metre Ω.m kg.m ³ .A ² .s ⁻³ conductivity siemens per metre S/m A ² .s ⁻³ .kg ⁻¹ .m ² molar mass kilogram per mole kg/mol kg.mol ⁻¹	ŽŽ				
resistance, impedance, reactance ohm Ω kg.m ² .A ² .s ⁻³ conductance, admittance, susceptance siemens S A ² .s ⁻³ .kg ⁻¹ .m ² conductivity ohm-metre Ω.m kg.m ³ .A ² .s ⁻³ conductivity siemens per metre S/m A ² .s ⁻³ .kg ⁻¹ .m ² molar mass kilogram per mole kg/mol kg.mol ⁻¹	55				kg.m ² .A ⁻² .s ⁻²
resistance, impedance, reactance ohm Ω kg.m².A².s³ conductance, admittance, susceptance siemens S A².s³.kg-1.m² resistivity ohm-metre Ω.m kg.m³.A².s³ conductivity siemens per metre S/m A².s³.kg-1.m³ molar mass kilogram per mole kg/mol kg.mol-1	M		,		
conductance, admittance, susceptance siemens S A ² .s ³ .kg ⁻¹ .m ² resistivity ohm-metre Ω.m kg.m ³ .A ² .s ³ conductivity siemens per metre S/m A ² .s ³ .kg ⁻¹ .m ³ molar mass kilogram per mole kg/mol kg.mol-1			ohm	Ω	kg.m ² .A- ² .s- ³
resistivity ohm-metre Ω.m kg.m³.A-2.s³ conductivity siemens per metre S/m A2.s³.kg-1.m³ molar mass kilogram per mole kg/mol kg.mol-1 molar mass cubic matca per mole molar mach		conductance, admittance,	siemens	S	A ² .s ³ .kg ⁻¹ .m ⁻²
conductivity siemens per metre S/m A ² ,s ³ ,kg ⁻¹ ,m ³ molar mass kilogram per mole kg/mol kg.mol-1 molar wass cubic matter per mole matter per mole matter			ohm-metre	Ω.m	kg.m ³ .A- ² .s ⁻³
molar mass kilogram per mole kg/mol kg.mol-1		,			A ² .s ³ .ka ⁻¹ .m ⁻³
malar volume cubic metro per male m3/mal m3 mal-1					
XSTATE concentration kilogram per cubic metre kg/m³ kg.m³ molar concentration mole per cubic metre mol/m³ mol.m³ molarity mole per kilogram mol/kg mol.kg³	×				
molar concentration mole per cubic metre mol/m ³ mol.m ⁻³ molarity mole per kilogram mol/kg mol.kg ⁻¹	STR				
molarity mole per kilogram mol/kg mol.kg-1	W.	molar concentration	÷ .		
 Molarly mole per kilogram moly kg mol.kg. 	ΞT				
	0	mordiny	mole per kilograffi	mor/ kg	mointg

www.omerin.com

Form

Main conversion factors for units of measure

Halta	Commentant	11	Commission
Units	Conversion	Units	Conversion
Length (conversion in metres)	factor		factor
	1 1010		1 (000 ((10)
angström (Å)	1.10.10	mile nautical mile	1.609344.10 ³ 1.852.10 ³
light year fermi (fm)	9.46073.1015 1.10-15	pica	4.2175.103
foot (ft)	3.048.101	point [US]	3.515.104
inch (in)	2.54.10-2	rod	5.0292.100
micron (µ)	1.10%	sigma (o)	1.10.12
mil	2.54.105	yard (yd)	9.144.10.1
Surface area (conversion in metres)			
, , , , , , , , , , , , , , , , , , ,	1 100		
centiare (ca)	1.10º 1.10²		5.067075.10-10
are (a) hectare (ha)	1.104	rood acre	1.01171.10 ³ 4.04686.10 ³
necidie (nd)	1.104	dcie	4.04000.10*
Volume (conversion in cubic metres)			
barrel [US]	1.58987.101	gill [UK]	1.42065.104
board foot	2.36.10 ⁻³	gill [US] (gi)	1.18294.104
bushel [UK]	3.63687.102	liquid pint [US] (liq pt)	4.73176.104
bushel [US] (bu)	3.52391.102	liquid quart [US] (liq qt)	9.46352.104
dry barrel [US] (bbl)	1.15627.101	litre (L)	1.10-3
dry pint [US] (dry pt)	5.50610.104	minim [UK] (min)	5.91939.108
dry quart [US] (dry qt) fluid curses [LK] (fl. cz)	1.10122.10 ⁻³ 2.84130.10 ⁻⁵	minim [US] (min)	6.16115.108
fluid ounce [UK] (fl oz) fluid ounce [US] (fl oz)	2.95735.105	peck [UK] peck [US]	9.0922.10 ⁻³ 8.809768.10 ⁻³
gallon [UK] (gal)	4.54609.103	quart [UK] (qt)	1.13652.103
gallon [US] (gal)	3.78541.103	dogu [o(1 (di)	
	500 /1.10		
Planar angle (conversion in radians)			
degree (°)	1.745329.10-2		2.908882.104
grade (gr)	1.570796.10-2	second (")	4.848137.100
Time (conversion in seconds)			
hour (h)	3.6.10 ³	minute (min)	6.10 ¹
day (d)	8.64.104		0.10
	0.01.10		
Mass (conversion in kilogrammes)			
cental	4.53592.10 ¹	ton (ton)	1.016047.10 ³
long ton [US]	1.016047.103	tonne (t)	1.103
ounce (oz)	2.834952.10-2	troy ounce	3.11035.10-2
pound (lb)	4.535924.10-1	troy pound	3.73242.101
quintal (q)	1.102	atomic mass (u)	1.66054.10 ⁻²⁷
short ton (sh tn)	9.07185.102		
Speed (conversion in metres per second)			
knot	5.14444.104		
Force (conversion in Newtons)			
dyne (dyn)	1.10.5	pound-force (lbf)	4.44822.100
kilogram-force (kgf)	9.80665.100	poundal (pdl)	1.38255.101
pond (p)	9.80665.103	··	
Energy transferred, work (conversion in joules)	1.055654.105		0.00//5.205
british thermal unit (Btu)	1.055056.103	kilogrammetre (kgm)	9.80665.100
calorie I.T. (cal I.T.)	4.1868.100	therm	1.055056.108
calorie 15°C (cal15)	4.1855.100	thermie (th)	4.1855.100
electronvolt (eV)	1.60218.10-19	thermochemical calorie (calth)	4.1840.100
frigorie (fg)	-4.1855.10 ³	watthour (Wh)	3.6.10 ³
Power (conversion in watts)			
horsepower (hp)	7.35499.10 ²	var (var)	1.100
horsepower [UK] (hp)	7.4570.10 ²		
Stress and pressure (conversion in Pascals)			
normal atmosphere (atm)	1.01325.105	inch of mercury (inHg)	3.38639.10 ³
technical atmosphere (att)	9.80665.104	millimetre of water (mmH ₂ O)	9.80665.10
bar (bar)	1.105	millimetre of mercury (mmHg)	1.333224.102
foot of water (ftH2O)	2.98907.10 ³	pound-force per square inch (psi	
inch of water (inH2O)	2.49089.10 ²	torr (Torr)	1.333224.102
	2.47007.10-		1.000224.10*
Magnetomotive force (conversion in amperes) gilbert (Gb)	7.9577.101		
Quantity of electricity, electric charge (conversion in coulombs)			
ampere-hour (Ah)	3.6.10 ³	franklin (Fr)	3.33564.10.10
faraday (F)	9.64870.104		
Radioactivity (conversion in bequerels)			
curie (Ci)	02/07/001010		
CUTE ICT	03/07/201010		
()			
Exposure (conversion in coulombs per kilogramme)			
_	2.58 x 104		

www.omerin.com

The information provided in this technical data sheet is indicative and may be medified without prior notice, laying, wiring and electrical conditions and the environment of the cable can not be fully considered in our studies. In no way the company OMERIN's hall be held responsible for any incident in the case of inappropriate uses, particularly in the case of wiring conditions that do not respect the good practice and the standards in force. For an optimum use of the cables produced by our company, we recommend test-ing in real conditions. Our sales department is available for a possible provision of samples, and/or for the conditions of a complete study in our laboratories. ® Registered trademark of the OMERIN Group. Drawings and photos are not contractual. Reproduction is prohibited without the prior agreement of OMERIN.

Temperature conversion factors

Tc: temperature in degrees Celsius Tk: temperature in degrees Kelvin Tf: temperature in degrees Fahrenheit

Tc = Tk - 273.15	Tc = 5/9 * (Tf - 32)
Tf = 1.8 * Tk - 459.67	Tf = 9/5 * Tc + 32

Table of correspondences between American (AWG) and metric (mm²) cross-sections

AWG: American Wire Gauge. MCM: thousands of circular mils

C	ross-sectio	ns	Dig	meter
AWG	MCM	mm ²	mm	inch
		380		inch
-		355		
		303 304		
-		304 253	-	
		203	-	
-		203 177		
	350 300	152		
	250	127		
4/0	212	107	- 11.7	0.4600
3/0	168	85.0	10.4	0.4000
2/0	133	67.5	9.27	0.3648
1/0	105	53.4	8.25	0.3048
1/0	83.7	42.4	7.35	0.2893
2	66.4 52.6	33.6 26.7	6.54 5.83	0.2576
4	41.7 33.1	21.2 16.8	5.19 4.62	0.2043 0.1819
6 7	26.2 20.8	13.3 10.6	4.11 3.67	0.1620 0.1443
8	16.5	8.35		
9			3.26	0.1285
10	13.1 10.4	6.62	2.91 2.59	0.1144 0.1019
11	8.23	5.27 4.15	2.39	0.0907
12	6.53	3.31	2.05	0.0907
13	5.18	2.63	1.83	0.0808
13	4.11	2.03	1.63	0.0720
15	3.26	1.65	1.45	0.0571
16	2.58	1.31	1.43	0.0508
17	2.05	1.04	1.15	0.04526
18	1.62	0.823	1.024	0.4030
19	1.29	0.653	0.912	0.03589
20	1.29	0.512	0.912	0.03196
20	0.810	0.412	0.723	0.02846
22	0.642	0.325	0.644	0.02535
23	0.509	0.259	0.573	0.02353
24	0.404	0.205	0.573	0.02237
25	0.320	0.163	0.455	0.02010
26	0.254	0.128	0.405	0.01790
20	0.201	0.102	0.361	0.01394
28	0.160	0.0804	0.321	0.01420
29	0.126	0.0646	0.286	0.01204
30	0.120	0.0503	0.255	0.01003
31	0.080	0.0400	0.233	0.00893
32	0.063	0.0320	0.202	0.00795
33	0.050	0.0252	0.180	0.00793
34	0.030	0.0232	0.160	0.00/08
35	0.034	0.0200	0.143	0.00561
36	0.025	0.0123	0.143	0.00500
37	0.023	0.0123	0.127	0.00300
38	0.015	0.00795	0.101	0.00397
39	0.013	0.00632	0.0897	0.00353
40	0.0096		0.0789	0.00310

Other conversion factors metric system / Anglo-Saxon system

millimetres	х	0.03937	=	inches
millimetres	х	39.37	=	mils
metres	х	39.37	=	inches
metres	х	3.280	=	feet
inches	х	25.40	=	millimetres
feet	х	0.3048	=	metres
mils	х	0.0254	=	millimetres
kilograms	х	2.205	=	pounds
pounds	х	0.4536	=	kilograms
Ω/km	х	0.3048	=	Ω / 1000 feet
Ω / 1000 feet	х	3.281	=	Ω/km
pounds / 1000 feet	х	1.488	=	kg / km
square inches	х	645.2	=	square millimetres
square millimetres	х	1.273	=	circular mm
square millimetres	х	1973.5	=	circular mils
square mils	х	1.273	=	circular mils
circular mm	х	1550	=	circular mils
circular mm	х	0.7854	=	square millimetres

Notes	24
NOICS	, 3
	-

www.omerin.com

Headquarters and division principale Zone industrielle - 63600 Ambert - France

Tel. +33 **(0)4 73 82 50 00** Fax +33 (0)4 73 82 50 10 e-mail: omerin@omerin.com

division silisol B.P. 87 - 11, allée du Couchant Z.I. du Devey 42010 Saint-Etienne Cedex 2 - France

Tel. +33 **(0)4 77 81 36 00** Fax +33 (0)4 77 81 37 00 e-mail: silisol@omerin.com

www.omerin.com